940 resultados para 010300 NUMERICAL AND COMPUTATIONAL MATHEMATICS
Resumo:
This chapter explores the role of mentors in supporting pre-service teachers to include all children in mathematics teaching, no matter what their individual needs.
Resumo:
The electronic properties of four divinylanthracene-bridged diruthenium carbonyl complexes [{RuCl(CO)(PMe3)3}2(μ[BOND]CH[DOUBLE BOND]CHArCH[DOUBLE BOND]CH)] (Ar=9,10-anthracene (1), 1,5-anthracene (2), 2,6-anthracene (3), 1,8-anthracene (4)) obtained by molecular spectroscopic methods (IR, UV/Vis/near-IR, and EPR spectroscopy) and DFT calculations are reported. IR spectroelectrochemical studies have revealed that these complexes are first oxidized at the noninnocent bridging ligand, which is in line with the very small ν(C[TRIPLE BOND]O) wavenumber shift that accompanies this process and also supported by DFT calculations. Because of poor conjugation in complex 1, except oxidized 1+, the electronic absorption spectra of complexes 2+, 3+, and 4+ all display the characteristic near-IR band envelopes that have been deconvoluted into three Gaussian sub-bands. Two of the sub-bands belong mainly to metal-to-ligand charge-transfer (MLCT) transitions according to results from time-dependent DFT calculations. EPR spectroscopy of chemically generated 1+–4+ proves largely ligand-centered spin density, again in accordance with IR spectra and DFT calculations results.
Resumo:
The IEEE 754 standard for oating-point arithmetic is widely used in computing. It is based on real arithmetic and is made total by adding both a positive and a negative infinity, a negative zero, and many Not-a-Number (NaN) states. The IEEE infinities are said to have the behaviour of limits. Transreal arithmetic is total. It also has a positive and a negative infinity but no negative zero, and it has a single, unordered number, nullity. We elucidate the transreal tangent and extend real limits to transreal limits. Arguing from this firm foundation, we maintain that there are three category errors in the IEEE 754 standard. Firstly the claim that IEEE infinities are limits of real arithmetic confuses limiting processes with arithmetic. Secondly a defence of IEEE negative zero confuses the limit of a function with the value of a function. Thirdly the definition of IEEE NaNs confuses undefined with unordered. Furthermore we prove that the tangent function, with the infinities given by geometrical con- struction, has a period of an entire rotation, not half a rotation as is commonly understood. This illustrates a category error, confusing the limit with the value of a function, in an important area of applied mathe- matics { trigonometry. We brie y consider the wider implications of this category error. Another paper proposes transreal arithmetic as a basis for floating- point arithmetic; here we take the profound step of proposing transreal arithmetic as a replacement for real arithmetic to remove the possibility of certain category errors in mathematics. Thus we propose both theo- retical and practical advantages of transmathematics. In particular we argue that implementing transreal analysis in trans- floating-point arith- metic would extend the coverage, accuracy and reliability of almost all computer programs that exploit real analysis { essentially all programs in science and engineering and many in finance, medicine and other socially beneficial applications.
Resumo:
Familial idiopathic basal ganglia calcification, also known as ""Fahr`s disease"" (FD), is a neuropsychiatric disorder with autosomal dominant pattern of inheritance and characterized by symmetric basal ganglia calcifications and, occasionally, other brain regions. Currently, there are three loci linked to this devastating disease. The first one (IBGC1) is located in 14q11.2-21.3 and the other two have been identified in 2q37 (IBGC2) and 8p21.1-q11.13 (IBGC3). Further studies identified a heterozygous variation (rs36060072) which consists in the change of the cytosine to guanine located at MGEA6/CTAGE5 gene, present in all of the affected large American family linked to IBGC1. This missense substitution, which induces changes of a proline to alanine at the 521 position (P521A), in a proline-rich and highly conserved protein domain was considered a rare variation, with a minor allele frequency (MAF) of 0.0058 at the US population. Considering that the population frequency of a given variation is an indirect indicative of potential pathogenicity, we screened 200 chromosomes in a random control set of Brazilian samples and in two nuclear families, comparing with our previous analysis in a US population. In addition, we accomplished analyses through bioinformatics programs to predict the pathogenicity of such variation. Our genetic screen found no P521A carriers. Polling these data together with the previous study in the USA, we have now a MAF of 0.0036, showing that this mutation is very rare. On the other hand, the bioinformatics analysis provided conflicting findings. There are currently various candidate genes and loci that could be involved with the underlying molecular basis of FD etiology, and other groups suggested the possible role played by genes in 2q37, related to calcium metabolism, and at chromosome 8 (NRG1 and SNTG1). Additional mutagenesis and in vivo studies are necessary to confirm the pathogenicity for variation in the P521A MGEA6.
Resumo:
Several accounts put forth to explain the flash-lag effect (FLE) rely mainly on either spatial or temporal mechanisms. Here we investigated the relationship between these mechanisms by psychophysical and theoretical approaches. In a first experiment we assessed the magnitudes of the FLE and temporal-order judgments performed under identical visual stimulation. The results were interpreted by means of simulations of an artificial neural network, that wits also employed to make predictions concerning the F LE. The model predicted that a spatio-temporal mislocalisation would emerge from two, continuous and abrupt-onset, moving stimuli. Additionally, a straightforward prediction of the model revealed that the magnitude of this mislocalisation should be task-dependent, increasing when the use of the abrupt-onset moving stimulus switches from a temporal marker only to both temporal and spatial markers. Our findings confirmed the model`s predictions and point to an indissoluble interplay between spatial facilitation and processing delays in the FLE.
Resumo:
CD and EPR were used to characterize interactions of oxindole-Schiff base copper(II) complexes with human serum albumin (HSA). These imine ligands form very stable complexes with copper, and can efficiently compete for this metal ion towards the specific N-terminal binding site of the protein, consisting of the amino acid sequence Asp-Ala-His. Relative stability constants for the corresponding complexes were estimated from CD data, using the protein as competitive ligand, with values of log K(CuL) in the range 15.7-18.1, very close to that of [Cu(HSA)] itself, with log K(CuHSA) 16.2. Some of the complexes are also able to interfere in the a-helix structure of the protein, while others seem not to affect it. EPR spectra corroborate those results, indicating at least two different metal species in solution, depending on the imine ligand. Oxidative damage to the protein after incubation with these copper(II) complexes, particularly in the presence of hydrogen peroxide, was monitored by carbonyl groups formation, and was observed to be more severe when conformational features of the protein were modified. Complementary EPR spin-trapping data indicated significant formation of hydroxyl and carbon centered radicals, consistent with an oxidative mechanism. Theoretical calculations at density functional theory (DFT) level were employed to evaluate Cu(II)-L binding energies, L -> Cu(II) donation, and Cu(II) -> L back-donation, by considering the Schiff bases and the N-terminal site of HSA as ligands. These results complement previous studies on cytotoxicity, nuclease and pro-apoptotic properties of this kind of copper(II) complexes, providing additional information about their possibilities of transport and disposition in blood plasma. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Tuberculosis (TB) is one of the most common infectious diseases known to man and responsible for millions of human deaths in the world. The increasing incidence of TB in developing countries, the proliferation of multidrug resistant strains, and the absence of resources for treatment have highlighted the need of developing new drugs against TB. The shikimate pathway leads to the biosynthesis of chorismate, a precursor of aromatic amino acids. This pathway is absent from mammals and shown to be essential for the survival of Mycobacterium tuberculosis, the causative agent of TB. Accordingly, enzymes of aromatic amino acid biosynthesis pathway represent promising targets for structure-based drug design. The first reaction in phenylalanine biosynthesis involves the conversion of chorismate to prephenate, catalyzed by chorismate mutase. The second reaction is catalyzed by prephenate dehydratase (PDT) and involves decarboxylation and dehydratation of prephenate to form phenylpyruvate, the precursor of phenylalanine. Here, we describe utilization of different techniques to infer the structure of M. tuberculosis PDT (MtbPDT) in solution. Small angle X-ray scattering and ultracentrifugation analysis showed that the protein oligomeric state is a tetramer and MtbPDT is a flat disk protein. Bioinformatics tools were used to infer the structure of MtbPDT A molecular model for MtbPDT is presented and molecular dynamics simulations indicate that MtbPDT i.s stable. Experimental and molecular modeling results were in agreement and provide evidence for a tetrameric state of MtbPDT in solution.
Resumo:
One of the first questions to consider when designing a new roll forming line is the number of forming steps required to produce a profile. The number depends on material properties, the cross-section geometry and tolerance requirements, but the tool designer also wants to minimize the number of forming steps in order to reduce the investment costs for the customer. There are several computer aided engineering systems on the market that can assist the tool designing process. These include more or less simple formulas to predict deformation during forming as well as the number of forming steps. In recent years it has also become possible to use finite element analysis for the design of roll forming processes. The objective of the work presented in this thesis was to answer the following question: How should the roll forming process be designed for complex geometries and/or high strength steels? The work approach included both literature studies as well as experimental and modelling work. The experimental part gave direct insight into the process and was also used to develop and validate models of the process. Starting with simple geometries and standard steels the work progressed to more complex profiles of variable depth and width, made of high strength steels. The results obtained are published in seven papers appended to this thesis. In the first study (see paper 1) a finite element model for investigating the roll forming of a U-profile was built. It was used to investigate the effect on longitudinal peak membrane strain and deformation length when yield strength increases, see paper 2 and 3. The simulations showed that the peak strain decreases whereas the deformation length increases when the yield strength increases. The studies described in paper 4 and 5 measured roll load, roll torque, springback and strain history during the U-profile forming process. The measurement results were used to validate the finite element model in paper 1. The results presented in paper 6 shows that the formability of stainless steel (e.g. AISI 301), that in the cold rolled condition has a large martensite fraction, can be substantially increased by heating the bending zone. The heated area will then become austenitic and ductile before the roll forming. Thanks to the phenomenon of strain induced martensite formation, the steel will regain the martensite content and its strength during the subsequent plastic straining. Finally, a new tooling concept for profiles with variable cross-sections is presented in paper 7. The overall conclusions of the present work are that today, it is possible to successfully develop profiles of complex geometries (3D roll forming) in high strength steels and that finite element simulation can be a useful tool in the design of the roll forming process.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this work, an analysis of the natural convection flow caused by heat sources dissipating energy at a constant rate simulating electronic components mounted at the bottom surface of a cavity symmetrically cooled from the sides and insulated at the top is performed. This problem was studied numerically and experimentally for several aspect ratios (height/width), for different levels of dissipation in the sources, and for different side wall temperatures. Temperature and velocity fields were determined as well as the temperature variation along the surface where the sources are mounted and the average Nusselt number in the source surfaces. Numerical and experimental results were found to agree.