949 resultados para 0-2 cm
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
L’ecografia è la metodica diagnostica più utilizzata come screening e follow-up nei pazienti epatopatici con o senza lesioni focali e questo grazie alle sue peculiari caratteristiche, che sono date dall’essere real-time, maneggevole, priva di radiazioni ionizzanti e con bassi costi. Tuttavia tale metodica se confrontata con la TC o la RMN, può avere importanti limiti, quali l’impossibilità di visualizzare piccole lesioni localizzate in aree anatomicamente “difficili” o in pazienti obesi, che sono già state identificate con altre tecniche, come la TC o la RMN. Per superare queste limitazioni sono stati introdotti dei sistemi di “fusione d’immagine” che consentono di sincronizzare in tempo reale una metodica real time con bassa risoluzione spaziale come l’ecografia ed una statica ad alta risoluzione come la TC o la RMN. Ciò si ottiene creando attorno al paziente un piccolo campo elettromagnetico costituito da un generatore e da un rilevatore applicato al trasduttore ecografico ed introducendo in un computer abbinato all’ecografo il “volume rendering” dell’addome del paziente ottenuto mediante TC multistrato o RM. Il preciso “ appaiamento spaziale “ delle due metodiche si ottiene individuando in entrambe lo stesso piano assiale di riferimento e almeno 3-4 punti anatomici interni. Tale sistema di fusione d’immagine potrebbe essere molto utile in campo epatologico nella diagnostica non invasiva del piccolo epatocarcinoma, che secondo le ultime linee guida, nei noduli di dimensioni fra 1 e 2 cm, richiede una concordanza nel comportamento contrastografico della lesione in almeno due tecniche d’immagine. Lo scopo del nostro lavoro è stato pertanto quello di valutare, in pazienti epatopatici, il contributo che tale sistema può dare nell’identificazione e caratterizzazione di lesioni inferiori a 20 mm, che erano già state identificate alla TC o alla RMN come noduli sospetti per HCC, ma che non erano stati visualizzati in ecografia convenzionale. L’eventuale re-identificazione con l’ecografia convenzionale dei noduli sospetti per essere HCC, può permettere di evitare, alla luce dei criteri diagnostici non invasivi un’ ulteriore tecnica d’immagine ed eventualmente la biopsia. Pazienti e Metodi: 17 pazienti cirrotici (12 Maschi; 5 Femmine), con età media di 68.9 +/- 6.2 (SD) anni, in cui la TC e la RMN con mezzo di contrasto avevano identificato 20 nuove lesioni focali epatiche, inferiori a 20 mm (13,6 +/- 3,6 mm), sospette per essere epatocarcinomi (HCC), ma non identificate all’ecografia basale (eseguita in cieco rispetto alla TC o alla RMN) sono stati sottoposti ad ecografia senza e con mezzo di contrasto, focalizzata su una zona bersaglio identificata tramite il sistema di fusione d’immagini, che visualizza simultaneamente le immagini della TC e della RMN ricostruite in modalità bidimensionale ( 2D), tridimensionale ( 3 D) e real-time. La diagnosi finale era stata stabilita attraverso la presenza di una concordanza diagnostica, secondo le linee guida internazionali o attraverso un follow-up nei casi di discordanza. Risultati: Una diagnosi non invasiva di HCC è stata raggiunta in 15/20 lesioni, inizialmente sospettate di essere HCC. Il sistema di fusione ha identificato e mostrato un comportamento contrastografico tipico in 12/15 noduli di HCC ( 80%) mentre 3/15 HCC (20%) non sono stati identificati con il sistema di fusione d’immagine. Le rimanenti 5/20 lesioni non sono state visualizzate attraverso i sistemi di fusione d’immagine ed infine giudicate come falsi positivi della TC e della RMN, poiché sono scomparse nei successivi mesi di follow-up e rispettivamente dopo tre, sei, nove, dodici e quindici mesi. Conclusioni: I nostri risultati preliminari mostrano che la combinazione del sistema di fusione dell’immagine associata all’ecografia senza e con mezzo di contrasto (CEUS), migliora il potenziale dell’ecografia nell’identificazione e caratterizzazione dell’HCC su fegato cirrotico, permettendo il raggiungimento di una diagnosi, secondo criteri non invasivi e slatentizzazndo casi di falsi positivi della TC e della RMN.
Resumo:
This study aims to evaluate the direct effects of anthropogenic deforestation on simulated climate at two contrasting periods in the Holocene, ~6 and ~0.2 k BP in Europe. We apply We apply the Rossby Centre regional climate model RCA3, a regional climate model with 50 km spatial resolution, for both time periods, considering three alternative descriptions of the past vegetation: (i) potential natural vegetation (V) simulated by the dynamic vegetation model LPJ-GUESS, (ii) potential vegetation with anthropogenic land use (deforestation) from the HYDE3.1 (History Database of the Global Environment) scenario (V + H3.1), and (iii) potential vegetation with anthropogenic land use from the KK10 scenario (V + KK10). The climate model results show that the simulated effects of deforestation depend on both local/regional climate and vegetation characteristics. At ~6 k BP the extent of simulated deforestation in Europe is generally small, but there are areas where deforestation is large enough to produce significant differences in summer temperatures of 0.5–1 °C. At ~0.2 k BP, extensive deforestation, particularly according to the KK10 model, leads to significant temperature differences in large parts of Europe in both winter and summer. In winter, deforestation leads to lower temperatures because of the differences in albedo between forested and unforested areas, particularly in the snow-covered regions. In summer, deforestation leads to higher temperatures in central and eastern Europe because evapotranspiration from unforested areas is lower than from forests. Summer evaporation is already limited in the southernmost parts of Europe under potential vegetation conditions and, therefore, cannot become much lower. Accordingly, the albedo effect dominates in southern Europe also in summer, which implies that deforestation causes a decrease in temperatures. Differences in summer temperature due to deforestation range from −1 °C in south-western Europe to +1 °C in eastern Europe. The choice of anthropogenic land-cover scenario has a significant influence on the simulated climate, but uncertainties in palaeoclimate proxy data for the two time periods do not allow for a definitive discrimination among climate model results.