897 resultados para (hyper)text
Resumo:
Objective To develop and evaluate machine learning techniques that identify limb fractures and other abnormalities (e.g. dislocations) from radiology reports. Materials and Methods 99 free-text reports of limb radiology examinations were acquired from an Australian public hospital. Two clinicians were employed to identify fractures and abnormalities from the reports; a third senior clinician resolved disagreements. These assessors found that, of the 99 reports, 48 referred to fractures or abnormalities of limb structures. Automated methods were then used to extract features from these reports that could be useful for their automatic classification. The Naive Bayes classification algorithm and two implementations of the support vector machine algorithm were formally evaluated using cross-fold validation over the 99 reports. Result Results show that the Naive Bayes classifier accurately identifies fractures and other abnormalities from the radiology reports. These results were achieved when extracting stemmed token bigram and negation features, as well as using these features in combination with SNOMED CT concepts related to abnormalities and disorders. The latter feature has not been used in previous works that attempted classifying free-text radiology reports. Discussion Automated classification methods have proven effective at identifying fractures and other abnormalities from radiology reports (F-Measure up to 92.31%). Key to the success of these techniques are features such as stemmed token bigrams, negations, and SNOMED CT concepts associated with morphologic abnormalities and disorders. Conclusion This investigation shows early promising results and future work will further validate and strengthen the proposed approaches.
Resumo:
Background Timely diagnosis and reporting of patient symptoms in hospital emergency departments (ED) is a critical component of health services delivery. However, due to dispersed information resources and a vast amount of manual processing of unstructured information, accurate point-of-care diagnosis is often difficult. Aims The aim of this research is to report initial experimental evaluation of a clinician-informed automated method for the issue of initial misdiagnoses associated with delayed receipt of unstructured radiology reports. Method A method was developed that resembles clinical reasoning for identifying limb abnormalities. The method consists of a gazetteer of keywords related to radiological findings; the method classifies an X-ray report as abnormal if it contains evidence contained in the gazetteer. A set of 99 narrative reports of radiological findings was sourced from a tertiary hospital. Reports were manually assessed by two clinicians and discrepancies were validated by a third expert ED clinician; the final manual classification generated by the expert ED clinician was used as ground truth to empirically evaluate the approach. Results The automated method that attempts to individuate limb abnormalities by searching for keywords expressed by clinicians achieved an F-measure of 0.80 and an accuracy of 0.80. Conclusion While the automated clinician-driven method achieved promising performances, a number of avenues for improvement were identified using advanced natural language processing (NLP) and machine learning techniques.
Resumo:
This publication arose from the interests of the chapter authors, ‘a small group of thoughtful people’ almost all of whom participated in one or both Transnational Dialogues in Research in Early Childhood Education for Sustainability, held in Stavanger, Norway in 2010 and Brisbane, Australia in 2011 (Refer Appendix 1 for list of participants). These meetings were the first time that a critical mass of researchers from vastly different parts of the globe - Norway, Sweden, Australia and New Zealand at the inaugural meeting, with additional participants from Korea, Japan and Singapore attending the second - had come together to debate, discuss and share ideas about research and theory in the emerging field of Early Childhood Education for Sustainability (ECEfS. Some of the researchers who joined these Transnational Dialogues, had met serendipitously at earlier conferences and meetings, or corresponded via email, but many had never met face-to-face. Now a significant number are contributing authors in this text. It is a testament to these researchers’ interest in this agenda that they mostly self-funded their travel and other costs to attend the Transnational Dialogues research meetings. While most chapter authors come from the field of early childhood education, a few are more aligned with education for sustainability/environmental education, while a much smaller number are already working at the intersection of early childhood education and education for sustainability. What we share as a group is a range of perspectives and orientations to research and to the research focus at the heart of this book - young children and their actual and potential capabilities as agents of change for sustainability. As researchers, regardless of experience and perspectives, participants knew they had something extra to offer - their expertise as researchers - providing scholarly insights into the work of practitioners, applying critically reflective lenses to curricula, pedagogies and assumptions, testing of ideas and theories, and presenting a sense for where ECEfS might fit or, indeed, go beyond norms and orthodoxies. This is a text, then, for both researchers and those whose primary interests lie in daily interactions with children, families and communities.
Resumo:
Theorists of multiliteracies, social semiotics, and the New Literacy Studies have drawn attention to the potential changing nature of writing and literacy in the context of networked communications. This article reports findings from a design-based research project in Year 4 classrooms (students aged 8.5-10 years) in a low socioeconomic status school. A new writing program taught students how to design multimodal and digital texts across a range of genres and text types, such as web pages, online comics, video documentaries, and blogs. The authors use Bernstein’s theory of the pedagogic device to theorize the pedagogic struggles and resolutions in remaking English through the specialization of time, space, and text. The changes created an ideological struggle as new writing practices were adapted from broader societal fields to meet the instructional and regulative discourses of a conventional writing curriculum.
Resumo:
Background Breastfeeding is recognised as the optimal method for feeding infants with health gains made by reducing infectious diseases in infancy; and chronic diseases, including obesity, in childhood, adolescence and adulthood. Despite this, exclusivity and duration in developed countries remains resistant to improvement. The objectives of this research were to test if an automated mobile phone text messaging intervention, delivering one text message a week, could increase “any” breastfeeding rates and improve breastfeeding self-efficacy and coping. Methods Women were eligible to participate if they were: over eighteen years; had an infant less than three months old; were currently breastfeeding; no diagnosed mental illness; and used a mobile phone . Women in the intervention group received MumBubConnect, a text messaging service with automated responses delivered once a week for 8 weeks. Women in the comparison group received their usual care and were sampled two years after the intervention group. Data collection included online surveys at two time points, week zero and week nine, to measure breastfeeding exclusivity and duration, coping, emotions, accountability and self-efficacy. A range of statistical analyses were used to test for differences between groups. Hierarchical regression was used to investigate change in breastfeeding outcome, between groups, adjusting for co-variates. Results The intervention group had 120 participants at commencement and 114 at completion, the comparison group had 114 participants at commencement and 86 at completion. MumBubConnect had a positive impact on the primary outcome of breastfeeding behaviors with women receiving the intervention more likely to continue exclusive breastfeeding; with a 6% decrease in exclusive breastfeeding in the intervention group, compared to a 14% decrease in the comparison group (p < 0.001). This remained significant after controlling for infant age, mother’s income, education and delivery type (p = 0.04). Women in the intervention group demonstrated active coping and were less likely to display emotions-focussed coping (p < .001). There was no discernible statistical effect on self-efficacy or accountability. Conclusions A fully automated text messaging services appears to improve exclusive breastfeeding duration. The service provides a well-accepted, personalised support service that empowers women to actively resolve breastfeeding issues. Trial registration Australian New Zealand Clinical Trials Registry: ACTRN12614001091695.
Resumo:
Description of a patient's injuries is recorded in narrative text form by hospital emergency departments. For statistical reporting, this text data needs to be mapped to pre-defined codes. Existing research in this field uses the Naïve Bayes probabilistic method to build classifiers for mapping. In this paper, we focus on providing guidance on the selection of a classification method. We build a number of classifiers belonging to different classification families such as decision tree, probabilistic, neural networks, and instance-based, ensemble-based and kernel-based linear classifiers. An extensive pre-processing is carried out to ensure the quality of data and, in hence, the quality classification outcome. The records with a null entry in injury description are removed. The misspelling correction process is carried out by finding and replacing the misspelt word with a soundlike word. Meaningful phrases have been identified and kept, instead of removing the part of phrase as a stop word. The abbreviations appearing in many forms of entry are manually identified and only one form of abbreviations is used. Clustering is utilised to discriminate between non-frequent and frequent terms. This process reduced the number of text features dramatically from about 28,000 to 5000. The medical narrative text injury dataset, under consideration, is composed of many short documents. The data can be characterized as high-dimensional and sparse, i.e., few features are irrelevant but features are correlated with one another. Therefore, Matrix factorization techniques such as Singular Value Decomposition (SVD) and Non Negative Matrix Factorization (NNMF) have been used to map the processed feature space to a lower-dimensional feature space. Classifiers with these reduced feature space have been built. In experiments, a set of tests are conducted to reflect which classification method is best for the medical text classification. The Non Negative Matrix Factorization with Support Vector Machine method can achieve 93% precision which is higher than all the tested traditional classifiers. We also found that TF/IDF weighting which works well for long text classification is inferior to binary weighting in short document classification. Another finding is that the Top-n terms should be removed in consultation with medical experts, as it affects the classification performance.
Resumo:
This paper evaluates the performance of different text recognition techniques for a mobile robot in an indoor (university campus) environment. We compared four different methods: our own approach using existing text detection methods (Minimally Stable Extremal Regions detector and Stroke Width Transform) combined with a convolutional neural network, two modes of the open source program Tesseract, and the experimental mobile app Google Goggles. The results show that a convolutional neural network combined with the Stroke Width Transform gives the best performance in correctly matched text on images with single characters whereas Google Goggles gives the best performance on images with multiple words. The dataset used for this work is released as well.
Resumo:
In this paper I propose that identity is momentary, fluid, and multiple while simultaneously providing us with a sense of sameness and continuity. Building on Valsiner’s ideas about human sense-making I suggest that we can reasonably deal with the multiplicity/unity paradox if we conceive of this process as resulting in the construction of a fuzzy field of hyper-generalized personal sense, which ordinarily functions as an implicit and unspeakable background of our everyday functioning, while being constantly re-created through momentary instances of foregrounded and explicit identity-dialogues. I illustrate the ideas put forward in the paper by analysing a case of a young woman experiencing a change in her being. Finally, in an attempt to illustrate and further develop the case I introduce a metaphor of carpet-weaving as an apposite image for thinking about identity as a process of a multiple and fragmented, yet also a united and constant being.
Resumo:
This project is a step forward in the study of text mining where enhanced text representation with semantic information plays a significant role. It develops effective methods of entity-oriented retrieval, semantic relation identification and text clustering utilizing semantically annotated data. These methods are based on enriched text representation generated by introducing semantic information extracted from Wikipedia into the input text data. The proposed methods are evaluated against several start-of-art benchmarking methods on real-life data-sets. In particular, this thesis improves the performance of entity-oriented retrieval, identifies different lexical forms for an entity relation and handles clustering documents with multiple feature spaces.
Resumo:
Objective. To test the impact of a theory-based, SMS (text message)-delivered behavioural intervention (Healthy Text) targeting sun protection or skin self-examination behaviours compared to attention-control. Method. Overall, 546 participants aged 18–42 years were randomised using a computer-generated number list to the skin self-examination (N = 176), sun protection (N = 187), or attention-control (N = 183) text messages group. Each group received 21 text messages about their assigned topic over 12 months (12 weekly messages for three months, then monthly messages for the next nine months). Data was collected via telephone survey at baseline, three-, and 12-months across Queensland from January 2012 to August 2013. Results. One year after baseline, the sun protection (mean change 0.12; P = 0.030) and skin self-examination groups (mean change 0.12; P = 0.035) had significantly greater improvement in their sun protection habits (SPH) index compared to the attention-control group (reference mean change 0.02). The increase in the proportion of participants who reported any skin self-examination from baseline to 12 months was significantly greater in the skin self-examination intervention group (103/163; 63%; P < 0.001) than the sun protection (83/173; 48%), or attention-control (65/165; 36%) groups. There was no significant effect of the intervention for participants who self-reported whole-body skin self-examination, sun tanning behaviour, or sunburn behaviours. Conclusion. The Healthy Text intervention was effective in inducing significant improvements in sun protection and any type of skin self-examination behaviours.
Resumo:
Background: A major challenge for assessing students’ conceptual understanding of STEM subjects is the capacity of assessment tools to reliably and robustly evaluate student thinking and reasoning. Multiple-choice tests are typically used to assess student learning and are designed to include distractors that can indicate students’ incomplete understanding of a topic or concept based on which distractor the student selects. However, these tests fail to provide the critical information uncovering the how and why of students’ reasoning for their multiple-choice selections. Open-ended or structured response questions are one method for capturing higher level thinking, but are often costly in terms of time and attention to properly assess student responses. Purpose: The goal of this study is to evaluate methods for automatically assessing open-ended responses, e.g. students’ written explanations and reasoning for multiple-choice selections. Design/Method: We incorporated an open response component for an online signals and systems multiple-choice test to capture written explanations of students’ selections. The effectiveness of an automated approach for identifying and assessing student conceptual understanding was evaluated by comparing results of lexical analysis software packages (Leximancer and NVivo) to expert human analysis of student responses. In order to understand and delineate the process for effectively analysing text provided by students, the researchers evaluated strengths and weakness for both the human and automated approaches. Results: Human and automated analyses revealed both correct and incorrect associations for certain conceptual areas. For some questions, that were not anticipated or included in the distractor selections, showing how multiple-choice questions alone fail to capture the comprehensive picture of student understanding. The comparison of textual analysis methods revealed the capability of automated lexical analysis software to assist in the identification of concepts and their relationships for large textual data sets. We also identified several challenges to using automated analysis as well as the manual and computer-assisted analysis. Conclusions: This study highlighted the usefulness incorporating and analysing students’ reasoning or explanations in understanding how students think about certain conceptual ideas. The ultimate value of automating the evaluation of written explanations is that it can be applied more frequently and at various stages of instruction to formatively evaluate conceptual understanding and engage students in reflective
Resumo:
Evidence is needed for the acceptability and user preferences of receiving skin cancer-related text messages. We prepared 27 questions to evaluate attitudes, satisfaction with program characteristics such as timing and spacing, and overall satisfaction with the Healthy Text program in young adults. Within this randomised controlled trial (age 18-42 years), 546 participants were assigned to one of three Healthy Text message groups; sun protection, skin self-examination, or attention-control. Over a 12-month period, 21 behaviour-specific text messages were sent to each group. Participants’ preferences were compared between the two interventions and control group at the 12-month follow-up telephone interview. In all three groups, participants reported the messages were easy to understand (98%), provided good suggestions or ideas (88%), and were encouraging (86%) and informative (85%) with little difference between the groups. The timing of the texts was received positively (92%); however, some suggestions for frequency or time of day the messages were received from 8% of participants. Participants in the two intervention groups found their messages more informative, and triggering behaviour change compared to control. Text messages about skin cancer prevention and early detection are novel and acceptable to induce behaviour change in young adults.
Resumo:
It is a big challenge to guarantee the quality of discovered relevance features in text documents for describing user preferences because of large scale terms and data patterns. Most existing popular text mining and classification methods have adopted term-based approaches. However, they have all suffered from the problems of polysemy and synonymy. Over the years, there has been often held the hypothesis that pattern-based methods should perform better than term-based ones in describing user preferences; yet, how to effectively use large scale patterns remains a hard problem in text mining. To make a breakthrough in this challenging issue, this paper presents an innovative model for relevance feature discovery. It discovers both positive and negative patterns in text documents as higher level features and deploys them over low-level features (terms). It also classifies terms into categories and updates term weights based on their specificity and their distributions in patterns. Substantial experiments using this model on RCV1, TREC topics and Reuters-21578 show that the proposed model significantly outperforms both the state-of-the-art term-based methods and the pattern based methods.