922 resultados para wild soybean
Resumo:
Abstract Many plants form associations with arbuscular mycorrhizal fungi (AMF) because they profit from improved phosphorus nutrition and from protection against pathogens. Whereas mycorrhiza-induced pathogen protection is well understood in agricultural plant species, it is rarely studied in wild plants. As many pathogens infest plants in the first days after germination, mycorrhiza-induced pathogen protection may be especially important in the first few weeks of plant establishment. Here, we investigated interacting effects of {AMF} and the seedling pathogen Pythium ultimum on the performance of six- to seven-week-old seedlings of six wild plant species of the family Asteraceae in a full factorial experiment. Plant species differed in their response to AMF, the pathogen and their interactions. {AMF} increased and the pathogen decreased plant biomass in one and three species, respectively. Two plant species were negatively affected by {AMF} in the absence, but positively or not affected in the presence of the pathogen, indicating protection by AMF. This mycorrhiza-induced pathogen protection is especially surprising as we could not detect mycorrhizal structure in the roots of any of the plants. Our results show that even seedlings without established intraradical hyphal network can profit from AMF, both in terms of growth promotion in the absence of a pathogen and pathogen protection. The function of {AMF} is highly species-specific, but tends to be similar for more closely related plant species, suggesting a phylogenetic component of mycorrhizal function. Further studies should test a wider range of plant species, as our study was restricted to one plant family, and investigate whether plants profit from early mycorrhizal benefits in the long term.
Resumo:
This study investigated the attitudes and beliefs of pig farmers and hunters in Germany, Bulgaria and the western part of the Russian Federation towards reporting suspected cases of African swine fever (ASF). Data were collected using a web-based questionnaire survey targeting pig farmers and hunters in these three study areas. Separate multivariable logistic regression models identified key variables associated with each of the three binary outcome variables whether or not farmers would immediately report suspected cases of ASF, whether or not hunters would submit samples from hunted wild boar for diagnostic testing and whether or not hunters would report wild boar carcasses. The results showed that farmers who would not immediately report suspected cases of ASF are more likely to believe that their reputation in the local community would be adversely affected if they were to report it, that they can control the outbreak themselves without the involvement of veterinary services and that laboratory confirmation would take too long. The modelling also indicated that hunters who did not usually submit samples of their harvested wild boar for ASF diagnosis, and hunters who did not report wild boar carcasses are more likely to justify their behaviour through a lack of awareness of the possibility of reporting. These findings emphasize the need to develop more effective communication strategies targeted at pig farmers and hunters about the disease, its epidemiology, consequences and control methods, to increase the likelihood of early reporting, especially in the Russian Federation where the virus circulates
Resumo:
Scent-marking is widespread among mammals and has been observed in many felid species. Although the behaviour is well-described, little is known about its function in wild felid populations. We investigated patterns of scent-marking and its role in intra- and intersexual communication among resident and non-resident Eurasian lynx Lynx lynx by observing interactions among wild lynx at natural marking sites by means of infrared camera traps. Marking activity of resident animals showed a peak during the mating season and was lowest during the time when females gave birth and lactated. Both sexes scent-marked, but male lynx visited marking sites much more often than females and marked relatively more often when visiting a site. Most visits to marking sites were by residents but we also observed scent-marking by non-residents. Juveniles were never observed marking. We found no evidence of lynx regularly renewing scent-marks after a certain 'expiry date' but the presence of a strange scent-mark triggered over-marking. Males responded similarly to the presence of another individual's scent-mark, irrespective of whether it was the top- or the underlying scent-mark in a mixture of scent-marks they encountered. Our results suggest that marking sites could serve as 'chemical bulletin boards', where male lynx advertise their presence and gain information on ownership relationships in a given area. Females placed their urine marks on top of the ones left by resident males, but further studies are needed to explain the functions of over-marking in females.
Resumo:
Hepatitis E is considered an emerging human viral disease in industrialized countries. Studies from Switzerland report a human seroprevalence of hepatitis E virus (HEV) of 2.6-21%, a range lower than in adjacent European countries. The aim of this study was to determine whether HEV seroprevalence in domestic pigs and wild boars is also lower in Switzerland and whether it is increasing and thus indicating that this zoonotic viral infection is emerging. Serum samples collected from 2,001 pigs in 2006 and 2011 and from 303 wild boars from 2008 to 2012 were analysed by ELISA for the presence of HEV-specific antibodies. Overall HEV seroprevalence was 58.1% in domestic pigs and 12.5% in wild boars. Prevalence in domestic pigs was significantly higher in 2006 than in 2011. In conclusion, HEV seroprevalence in domestic pigs and wild boars in Switzerland is comparable with the seroprevalence in other countries and not increasing. Therefore, prevalence of HEV in humans must be related to other factors than prevalence in pigs or wild boars.
Resumo:
Babesia are tick-borne parasites that are increasingly considered as a threat to animal and public health. We aimed to assess the role of European free-ranging wild ruminants as maintenance mammalian hosts for Babesia species and to determine risk factors for infection. EDTA blood was collected from 222 roe deer (Capreolus c. capreolus), 231 red deer (Cervus e. elaphus), 267 Alpine chamois (Rupicapra r. rupicapra) and 264 Alpine ibex (Capra i. ibex) from all over Switzerland and analysed by PCR with pan-Babesia primers targeting the 18S rRNA gene, primers specific for B. capreoli and Babesia sp. EU1, and by sequencing. Babesia species, including B. divergens, B. capreoli, Babesia sp. EU1, Babesia sp. CH1 and B. motasi, were detected in 10.7% of all samples. Five individuals were co-infected with two Babesia species. Infection with specific Babesia varied widely between host species. Cervidae were significantly more infected with Babesia spp. than Caprinae. Babesia capreoli and Babesia sp. EU1 were mostly found in roe deer (prevalences 17.1% and 7.7%, respectively) and B. divergens and Babesia sp. CH1 only in red deer. Factors significantly associated with infection were low altitude and young age. Identification of Babesia sp. CH1 in red deer, co-infection with multiple Babesia species and infection of wild Caprinae with B. motasi and Babesia sp. EU1 are novel findings. We propose wild Caprinae as spillover or accidental hosts for Babesia species but wild Cervidae as mammalian reservoir hosts for B. capreoli, possibly Babesia sp. EU1 and Babesia sp. CH1, whereas their role regarding B. divergens is more elusive.
Resumo:
As a consequence of artificial selection for specific traits, crop plants underwent considerable genotypic and phenotypic changes during the process of domestication. These changes may have led to reduced resistance in the cultivated plant due to shifts in resource allocation from defensive traits to increased growth rates and yield. Modern maize (Zea mays ssp. mays) was domesticated from its ancestor Balsas teosinte (Z. mays ssp. parviglumis) approximately 9000 years ago. Although maize displays a high genetic overlap with its direct ancestor and other annual teosintes, several studies show that maize and its ancestors differ in their resistance phenotypes with teosintes being less susceptible to herbivore damage. However, the underlying mechanisms are poorly understood. Here we addressed the question to what extent maize domestication has affected two crucial chemical and one physical defence traits and whether differences in their expression may explain the differences in herbivore resistance levels. The ontogenetic trajectories of 1,4-benzoxazin-3-ones, maysin and leaf toughness were monitored for different leaf types across several maize cultivars and teosinte accessions during early vegetative growth stages. We found significant quantitative and qualitative differences in 1,4-benzoxazin-3-one accumulation in an initial pairwise comparison, but we did not find consistent differences between wild and cultivated genotypes during a more thorough examination employing several cultivars/accessions. Yet, 1,4-benzoxazin-3-one levels tended to decline more rapidly with plant age in the modern maize cultivars. Foliar maysin levels and leaf toughness increased with plant age in a leaf-specific manner, but were also unaffected by domestication. Based on our findings we suggest that defence traits other than the ones that were investigated are responsible for the observed differences in herbivore resistance between teosinte and maize. Furthermore, our results indicate that single pairwise comparisons may lead to false conclusions regarding the effects of domestication on defensive and possibly other traits.
Resumo:
The wild-type A75/17 canine distemper virus (CDV) strain induces a persistent infection in the central nervous system but infects cell lines very inefficiently. In contrast, the genetically more distant Onderstepoort CDV vaccine strain (OP-CDV) induces extensive syncytia formation. Here, we investigated the roles of wild-type fusion (F(WT)) and attachment (H(WT)) proteins in Vero cells expressing, or not, the canine SLAM receptor by transfection experiments and by studying recombinants viruses expressing different combinations of wild-type and OP-CDV glycoproteins. We show that low fusogenicity is not due to a defect of the envelope proteins to reach the cell surface and that H(WT) determines persistent infection in a receptor-dependent manner, emphasizing the role of SLAM as a potent enhancer of fusogenicity. However, importantly, F(WT) reduced cell-to-cell fusion independently of the cell surface receptor, thus demonstrating that the fusion protein of the neurovirulent A75/17-CDV strain plays a key role in determining persistent infection.
Resumo:
The bacterial phosphoenolpyruvate: sugar phosphotransferase system serves the combined uptake and phosphorylation of carbohydrates. This structurally and functionally complex system is composed of several conserved functional units that, through a cascade of phosphorylated intermediates, catalyze the transfer of the phosphate moiety from phosphoenolpyruvate to the substrate, which is bound to the integral membrane domain IIC. The wild-type glucose-specific IIC domain (wt-IIC(glc)) of Escherichia coli was cloned, overexpressed and purified for biochemical and functional characterization. Size-exclusion chromatography and scintillation-proximity binding assays showed that purified wt-IIC(glc) was homogenous and able to bind glucose. Crystallization was pursued following two different approaches: (i) reconstitution of wt-IIC(glc) into a lipid bilayer by detergent removal through dialysis, which yielded tubular 2D crystals, and (ii) vapor-diffusion crystallization of detergent-solubilized wt-IIC(glc), which yielded rhombohedral 3D crystals. Analysis of the 2D crystals by cryo-electron microscopy and the 3D crystals by X-ray diffraction indicated resolutions of better than 6Å and 4Å, respectively. Furthermore, a complete X-ray diffraction data set could be collected and processed to 3.93Å resolution. These 2D and 3D crystals of wt-IIC(glc) lay the foundation for the determination of the first structure of a bacterial glucose-specific IIC domain.
Resumo:
Aeromonas salmonicida subsp. salmonicida is the causal agent of furunculosis in salmonids. We recently identified a group of genomic islands (AsaGEI) in this bacterium. AsaGEI2a, one of these genomic islands, has almost exclusively been identified in isolates from North America. To date, Aeromonas salmonicida subsp. salmonicida JF3224, a strain isolated from a wild brown trout (Salmo trutta) caught in Switzerland, was the only European isolate that appeared to bear AsaGEI2a. We analyzed the genome of JF3224 and showed that the genomic island in JF3224 is a new variant of AsaGEI, which we have called AsaGEI2b. While AsaGEI2b shares the same integrase gene and insertion site as AsaGEI2a, it is very different in terms of many other features. Additional genomic investigations combined with PCR genotyping revealed that JF3224 is sensitive to growth at 25°C, leading to insertion sequence-dependent rearrangement of the locus on the pAsa5 plasmid that encodes a type three secretion system, which is essential for the virulence of the bacterium. The analysis of the JF3224 genome confirmed that AsaGEIs are accurate indicators of the geographic origins of A. salmonicida subsp. salmonicida isolates and is another example of the susceptibility of the pAsa5 plasmid to DNA rearrangements.
Resumo:
Infectious disease outbreaks can be devastating because of their sudden occurrence, as well as the complexity of monitoring and controlling them. Outbreaks in wildlife are even more challenging to observe and describe, especially when small animals or secretive species are involved. Modeling such infectious disease events is relevant to investigating their dynamics and is critical for decision makers to accomplish outbreak management. Tularemia, caused by the bacterium Francisella tularensis, is a potentially lethal zoonosis. Of the few animal outbreaks that have been reported in the literature, only those affecting zoo animals have been closely monitored. Here, we report the first estimation of the basic reproduction number R0 of an outbreak in wildlife caused by F. tularensis using quantitative modeling based on a susceptible-infected-recovered framework. We applied that model to data collected during an extensive investigation of an outbreak of tularemia caused by F. tularensis subsp. holarctica (also designated as type B) in a closely monitored, free-roaming house mouse (Mus musculus domesticus) population in Switzerland. Based on our model and assumptions, the best estimated basic reproduction number R0 of the current outbreak is 1.33. Our results suggest that tularemia can cause severe outbreaks in small rodents. We also concluded that the outbreak self-exhausted in approximately three months without administrating antibiotics.
Resumo:
We present the first study comparing epitheliocystis in a wild and farmed salmonid in Europe. Sampling three tributaries to the Lake Geneva, including one from headwaters to river mouth, revealed an unequal distribution of epitheliocystis in brown trout (Salmo trutta). When evaluated histologically and comparing sites grouped as wild versus farm, the probability of finding infected trout is higher on farms. In contrast, the infection intensities, as estimated by the number of cysts per gill arch, were higher on average and showed maximum values in the wild trout. Sequence analysis showed the most common epitheliocystis agents were Candidatus Piscichlamydia salmonis, all clustering into a single clade, whereas Candidatus Clavichlamydia salmonicola sequences cluster in two closely related sub-species, of which one was mostly found in farmed fish and the other exclusively in wild brown trout, indicating that farms are unlikely to be the source of infections in wild trout. A detailed morphological analysis of cysts using transmission electron microscopy revealed unique features illustrating the wide divergence existing between Ca. P. salmonis and Ca. C. salmonicola within the phylum Chlamydiae
Resumo:
Enzootic pneumonia (EP) caused by Mycoplasma hyopneumoniae has a significant economic impact on domestic pig production. A control program carried out from 1999 to 2003 successfully reduced disease occurrence in domestic pigs in Switzerland, but recurrent outbreaks suggested a potential role of free-ranging wild boar (Sus scrofa) as a source of re-infection. Since little is known on the epidemiology of EP in wild boar populations, our aims were: (1) to estimate the prevalence of M. hyopneumoniae infections in wild boar in Switzerland; (2) to identify risk factors for infection in wild boar; and (3) to assess whether infection in wild boar is associated with the same gross and microscopic lesions typical of EP in domestic pigs. Nasal swabs, bronchial swabs and lung samples were collected from 978 wild boar from five study areas in Switzerland between October 2011 and May 2013. Swabs were analyzed by qualitative real time PCR and a histopathological study was conducted on lung tissues. Risk factor analysis was performed using multivariable logistic regression modeling. Overall prevalence in nasal swabs was 26.2% (95% CI 23.3-29.3%) but significant geographical differences were observed. Wild boar density, occurrence of EP outbreaks in domestic pigs and young age were identified as risk factors for infection. There was a significant association between infection and lesions consistent with EP in domestic pigs. We have concluded that M. hyopneumoniae is widespread in the Swiss wild boar population, that the same risk factors for infection of domestic pigs also act as risk factors for infection of wild boar, and that infected wild boar develop lesions similar to those found in domestic pigs. However, based on our data and the outbreak pattern in domestic pigs, we propose that spillover from domestic pigs to wild boar is more likely than transmission from wild boar to pigs.