994 resultados para weak key-IV combinations


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A key to the larvae of the genera of the sub-family Orthocladiinae from Larvae and Pupae of midges of the sub-family Orthocladiinae. Parts of the key refer to the rest of the publication which is not included in this partial translation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A description of the algal genus Cladophora from Vol 10 of the ”Freshwater Flora of Poland”. Illustrations are included.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The fetal and larval development of many freshwater fish is already relatively well covered. Coverage of the morphology of fish-species' eggs is very sparse. For this reason the authors have attempted to prepare a key on fish eggs which covers the bulk of German Teleostei fish. The key also includes a discussion of problems of categorization and terminology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Para reabilitar a ausência de um elemento dentário posterior, as próteses parciais fixas (PPF) com retentores intracoronários são uma alternativa aos implantes osseointegrados. O objetivo deste estudo foi avaliar a distribuição de tensões nessas próteses com três combinações de materiais: cerâmica de zircônia parcialmente estabilizada por ítria (ZPEI) revestida por cerâmica de fluorapatita (α), cerâmica de dissilicato de lítio (β) ou compósito fibrorreforçado (γ). Na composição α, foram analisadas a presença ou ausência da cerâmica de revestimento na parede cervical das caixas proximais e três variações na área total da seção transversal dos conectores (4 mm de largura x 3,2, 4,2 ou 5,2 mm de altura). Em 8 modelos bidimensionais de elementos finitos, uma carga vertical de 500 N foi aplicada na fossa central do pôntico e as tensões principais máximas (tração) e mínimas (compressão) foram apontadas em MPa. Inicialmente foram avaliados os 6 modelos com PPF de ZPEI e suas variações. Os maiores valores das tensões de tração foram encontrados no terço cervical dos conectores. Quando presente nestas regiões, a cerâmica de revestimento recebeu tensões acima do limite de sua resistência à flexão. Na comparação entre os modelos sem cerâmica de revestimento na parede cervical das caixas proximais, mesmo aquele com conectores de 3,2 x 4 mm, cuja infraestrutura apresentava 2,5 x 3 mm, poderia ser recomendado para uso clínico. Altos valores de tensões de compressão foram registrados entre o terço oclusal e médio dos conectores, correspondente à união entre as cerâmicas, o que poderia ocasionar, devido à flexão, falhas adesivas. Posteriormente, o modelo de ZPEI com a cerâmica de fluorapatita ausente da parede cervical das caixas proximais e área total dos conectores de 4,2 x 4 mm foi comparado aos dois outros materiais com conectores de mesma área. Na PPF de dissilicato de lítio, os valores representaram uma provável violação do limite de sua resistência à flexão. A PPF de compósito fibrorreforçado apresentou tensões bem abaixo do limite de resistência à flexão de sua infraestrutura, mas, como no modelo de ZPEI, tensões compressivas se concentraram com alto valor entre o terço oclusal e médio dos conectores, local de união entre a resina composta e a infraestrutura de fibras. Os resultados mostraram que a cerâmica de dissilicato de lítio e a presença da cerâmica de fluorapatita na parede cervical das caixas proximais deveriam ser contraindicadas para a condição proposta. Parece viável uma área de conectores na infraestrutura de ZPEI com no mínimo 2,5 x 3 mm. A PPF de compósito fibrorreforçado apresenta resistência estrutural para a situação estudada, mas, como também aquelas compostas de ZPEI, aparenta ter como pontos fracos a adesão entre a infraestrutura e o material de cobertura e a própria resistência deste último.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This partial translation of a bigger publication provides an identification key to the aquatic plant Hydrillae (Hydrocharitaceae) in Europe. Illustrations are included.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The propagation of waves in an extended, irregular medium is studied under the "quasi-optics" and the "Markov random process" approximations. Under these assumptions, a Fokker-Planck equation satisfied by the characteristic functional of the random wave field is derived. A complete set of the moment equations with different transverse coordinates and different wavenumbers is then obtained from the characteristic functional. The derivation does not require Gaussian statistics of the random medium and the result can be applied to the time-dependent problem. We then solve the moment equations for the phase correlation function, angular broadening, temporal pulse smearing, intensity correlation function, and the probability distribution of the random waves. The necessary and sufficient conditions for strong scintillation are also given.

We also consider the problem of diffraction of waves by a random, phase-changing screen. The intensity correlation function is solved in the whole Fresnel diffraction region and the temporal pulse broadening function is derived rigorously from the wave equation.

The method of smooth perturbations is applied to interplanetary scintillations. We formulate and calculate the effects of the solar-wind velocity fluctuations on the observed intensity power spectrum and on the ratio of the observed "pattern" velocity and the true velocity of the solar wind in the three-dimensional spherical model. The r.m.s. solar-wind velocity fluctuations are found to be ~200 km/sec in the region about 20 solar radii from the Sun.

We then interpret the observed interstellar scintillation data using the theories derived under the Markov approximation, which are also valid for the strong scintillation. We find that the Kolmogorov power-law spectrum with an outer scale of 10 to 100 pc fits the scintillation data and that the ambient averaged electron density in the interstellar medium is about 0.025 cm-3. It is also found that there exists a region of strong electron density fluctuation with thickness ~10 pc and mean electron density ~7 cm-3 between the PSR 0833-45 pulsar and the earth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Short identification key and morphological description of the mature larvae of Philopotamidae, Limnophilidae (genus Apatania) and Sericostomatidae

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photovoltaic energy conversion represents a economically viable technology for realizing collection of the largest energy resource known to the Earth -- the sun. Energy conversion efficiency is the most leveraging factor in the price of energy derived from this process. This thesis focuses on two routes for high efficiency, low cost devices: first, to use Group IV semiconductor alloy wire array bottom cells and epitaxially grown Group III-V compound semiconductor alloy top cells in a tandem configuration, and second, GaP growth on planar Si for heterojunction and tandem cell applications.

Metal catalyzed vapor-liquid-solid grown microwire arrays are an intriguing alternative for wafer-free Si and SiGe materials which can be removed as flexible membranes. Selected area Cu-catalyzed vapor-liquid solid growth of SiGe microwires is achieved using chlorosilane and chlorogermane precursors. The composition can be tuned up to 12% Ge with a simultaneous decrease in the growth rate from 7 to 1 μm/min-1. Significant changes to the morphology were observed, including tapering and faceting on the sidewalls and along the lengths of the wires. Characterization of axial and radial cross sections with transmission electron microscopy revealed no evidence of defects at facet corners and edges, and the tapering is shown to be due to in-situ removal of catalyst material during growth. X-ray diffraction and transmission electron microscopy reveal a Ge-rich crystal at the tip of the wires, strongly suggesting that the Ge incorporation is limited by the crystallization rate.

Tandem Ga1-xInxP/Si microwire array solar cells are a route towards a high efficiency, low cost, flexible, wafer-free solar technology. Realizing tandem Group III-V compound semiconductor/Si wire array devices requires optimization of materials growth and device performance. GaP and Ga1-xInxP layers were grown heteroepitaxially with metalorganic chemical vapor deposition on Si microwire array substrates. The layer morphology and crystalline quality have been studied with scanning electron microscopy and transmission electron microscopy, and they provide a baseline for the growth and characterization of a full device stack. Ultimately, the complexity of the substrates and the prevalence of defects resulted in material without detectable photoluminescence, unsuitable for optoelectronic applications.

Coupled full-field optical and device physics simulations of a Ga0.51In0.49P/Si wire array tandem are used to predict device performance. A 500 nm thick, highly doped "buffer" layer between the bottom cell and tunnel junction is assumed to harbor a high density of lattice mismatch and heteroepitaxial defects. Under simulated AM1.5G illumination, the device structure explored in this work has a simulated efficiency of 23.84% with realistic top cell SRH lifetimes and surface recombination velocities. The relative insensitivity to surface recombination is likely due to optical generation further away from the free surfaces and interfaces of the device structure.

Finally, GaP has been grown free of antiphase domains on Si (112) oriented substrates using metalorganic chemical vapor deposition. Low temperature pulsed nucleation is followed by high temperature continuous growth, yielding smooth, specular thin films. Atomic force microscopy topography mapping showed very smooth surfaces (4-6 Å RMS roughness) with small depressions in the surface. Thin films (~ 50 nm) were pseudomorphic, as confirmed by high resolution x-ray diffraction reciprocal space mapping, and 200 nm thick films showed full relaxation. Transmission electron microscopy showed no evidence of antiphase domain formation, but there is a population of microtwin and stacking fault defects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Optical Coherence Tomography(OCT) is a popular, rapidly growing imaging technique with an increasing number of bio-medical applications due to its noninvasive nature. However, there are three major challenges in understanding and improving an OCT system: (1) Obtaining an OCT image is not easy. It either takes a real medical experiment or requires days of computer simulation. Without much data, it is difficult to study the physical processes underlying OCT imaging of different objects simply because there aren't many imaged objects. (2) Interpretation of an OCT image is also hard. This challenge is more profound than it appears. For instance, it would require a trained expert to tell from an OCT image of human skin whether there is a lesion or not. This is expensive in its own right, but even the expert cannot be sure about the exact size of the lesion or the width of the various skin layers. The take-away message is that analyzing an OCT image even from a high level would usually require a trained expert, and pixel-level interpretation is simply unrealistic. The reason is simple: we have OCT images but not their underlying ground-truth structure, so there is nothing to learn from. (3) The imaging depth of OCT is very limited (millimeter or sub-millimeter on human tissues). While OCT utilizes infrared light for illumination to stay noninvasive, the downside of this is that photons at such long wavelengths can only penetrate a limited depth into the tissue before getting back-scattered. To image a particular region of a tissue, photons first need to reach that region. As a result, OCT signals from deeper regions of the tissue are both weak (since few photons reached there) and distorted (due to multiple scatterings of the contributing photons). This fact alone makes OCT images very hard to interpret.

This thesis addresses the above challenges by successfully developing an advanced Monte Carlo simulation platform which is 10000 times faster than the state-of-the-art simulator in the literature, bringing down the simulation time from 360 hours to a single minute. This powerful simulation tool not only enables us to efficiently generate as many OCT images of objects with arbitrary structure and shape as we want on a common desktop computer, but it also provides us the underlying ground-truth of the simulated images at the same time because we dictate them at the beginning of the simulation. This is one of the key contributions of this thesis. What allows us to build such a powerful simulation tool includes a thorough understanding of the signal formation process, clever implementation of the importance sampling/photon splitting procedure, efficient use of a voxel-based mesh system in determining photon-mesh interception, and a parallel computation of different A-scans that consist a full OCT image, among other programming and mathematical tricks, which will be explained in detail later in the thesis.

Next we aim at the inverse problem: given an OCT image, predict/reconstruct its ground-truth structure on a pixel level. By solving this problem we would be able to interpret an OCT image completely and precisely without the help from a trained expert. It turns out that we can do much better. For simple structures we are able to reconstruct the ground-truth of an OCT image more than 98% correctly, and for more complicated structures (e.g., a multi-layered brain structure) we are looking at 93%. We achieved this through extensive uses of Machine Learning. The success of the Monte Carlo simulation already puts us in a great position by providing us with a great deal of data (effectively unlimited), in the form of (image, truth) pairs. Through a transformation of the high-dimensional response variable, we convert the learning task into a multi-output multi-class classification problem and a multi-output regression problem. We then build a hierarchy architecture of machine learning models (committee of experts) and train different parts of the architecture with specifically designed data sets. In prediction, an unseen OCT image first goes through a classification model to determine its structure (e.g., the number and the types of layers present in the image); then the image is handed to a regression model that is trained specifically for that particular structure to predict the length of the different layers and by doing so reconstruct the ground-truth of the image. We also demonstrate that ideas from Deep Learning can be useful to further improve the performance.

It is worth pointing out that solving the inverse problem automatically improves the imaging depth, since previously the lower half of an OCT image (i.e., greater depth) can be hardly seen but now becomes fully resolved. Interestingly, although OCT signals consisting the lower half of the image are weak, messy, and uninterpretable to human eyes, they still carry enough information which when fed into a well-trained machine learning model spits out precisely the true structure of the object being imaged. This is just another case where Artificial Intelligence (AI) outperforms human. To the best knowledge of the author, this thesis is not only a success but also the first attempt to reconstruct an OCT image at a pixel level. To even give a try on this kind of task, it would require fully annotated OCT images and a lot of them (hundreds or even thousands). This is clearly impossible without a powerful simulation tool like the one developed in this thesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis has two basic themes: the investigation of new experiments which can be used to test relativistic gravity, and the investigation of new technologies and new experimental techniques which can be applied to make gravitational wave astronomy a reality.

Advancing technology will soon make possible a new class of gravitation experiments: pure laboratory experiments with laboratory sources of non-Newtonian gravity and laboratory detectors. The key advance in techno1ogy is the development of resonant sensing systems with very low levels of dissipation. Chapter 1 considers three such systems (torque balances, dielectric monocrystals, and superconducting microwave resonators), and it proposes eight laboratory experiments which use these systems as detectors. For each experiment it describes the dominant sources of noise and the technology required.

The coupled electro-mechanical system consisting of a microwave cavity and its walls can serve as a gravitational radiation detector. A gravitational wave interacts with the walls, and the resulting motion induces transitions from a highly excited cavity mode to a nearly unexcited mode. Chapter 2 describes briefly a formalism for analyzing such a detector, and it proposes a particular design.

The monitoring of a quantum mechanical harmonic oscillator on which a classical force acts is important in a variety of high-precision experiments, such as the attempt to detect gravitational radiation. Chapter 3 reviews the standard techniques for monitoring the oscillator; and it introduces a new technique which, in principle, can determine the details of the force with arbitrary accuracy, despite the quantum properties of the oscillator.

The standard method for monitoring the oscillator is the "amplitude- and-phase" method (position or momentum transducer with output fed through a linear amplifier). The accuracy obtainable by this method is limited by the uncertainty principle. To do better requires a measurement of the type which Braginsky has called "quantum nondemolition." A well-known quantum nondemolition technique is "quantum counting," which can detect an arbitrarily weak force, but which cannot provide good accuracy in determining its precise time-dependence. Chapter 3 considers extensively a new type of quantum nondemolition measurement - a "back-action-evading" measurement of the real part X1 (or the imaginary part X2) of the oscillator's complex amplitude. In principle X1 can be measured arbitrarily quickly and arbitrarily accurately, and a sequence of such measurements can lead to an arbitrarily accurate monitoring of the classical force.

Chapter 3 describes explicit gedanken experiments which demonstrate that X1 can be measured arbitrarily quickly and arbitrarily accurately, it considers approximate back-action-evading measurements, and it develops a theory of quantum nondemolition measurement for arbitrary quantum mechanical systems.

In Rosen's "bimetric" theory of gravity the (local) speed of gravitational radiation vg is determined by the combined effects of cosmological boundary values and nearby concentrations of matter. It is possible for vg to be less than the speed of light. Chapter 4 shows that emission of gravitational radiation prevents particles of nonzero rest mass from exceeding the speed of gravitational radiation. Observations of relativistic particles place limits on vg and the cosmological boundary values today, and observations of synchrotron radiation from compact radio sources place limits on the cosmological boundary values in the past.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This review examines water quality and stress indicators at levels of organisation from the individual to the community and beyond by means of three case studies concentrating on rocky shores within the north-east Atlantic. Responses of dogwhelks (Nucella) to tributyltin pollution from antifouling paints is examined as the main case study. There are effects at the individual level (development of male sexual characteristics in the female leading to effective sterility) and population level (reduction in juveniles, few females and eventual population disappearance of dogwhelks in badly contaminated areas) but information on community level effects of dogwhelk demise is sparse. Such effects were simulated by dogwhelk removal experiments on well studied, moderately exposed ledges on shores on the Isle of Man. The removal of dogwhelks reduced the size and longevity of newly established Fucus clumps that had escaped grazing. Removal of dogwhelks also increased the likelihood of algal escapes. In a factorial experiment dogwhelks were shown to be less important than limpets \{Patella) in structuring communities but still had a significant modifying effect by increasing the probability of algal escapes. Community level responses to stress on rocky shores are then explored by reference to catastrophic impacts such as oil spills, using the Torrey Canyon as a case study. Recovery of the system in response to this major perturbation took between 10-15 years through a series of damped oscillations. The final case study is that of indicators of ecosystem level change in response to climate fluctuations, using ratios of northern \{Semibalanus balanoides) and southern (Chthamalus spp.) barnacles. Indices derived from counts on the shore show good correlations with inshore sea-water temperatures after a 2-year lag phase. The use of barnacles to measure offshore changes is reviewed. The discussion considers the use of bioindicators at various levels of organisation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experimental investigations were made of the nature of weak superconductivity in a structure having well-defined, controllable characteristics and geometry. Controlled experiments were made possible by using a thin-film structure which was entirely metallic and consisted of a superconducting film with a localized section that was weak in the sense that its transition temperature was depressed relative to the rest of the film. The depression of transition temperature was brought about by underlaying the superconductor with a normal metal.

The DC and AC electrical characteristics of this structure were studied. It was found that this structure exhibited a non-zero, time-average supercurrent at finite voltage to at least .2 mV, and generated an oscillating electric potential at a frequency given by the Josephson relation. The DC V-I characteristic and the amplitude of the AC oscillation were found to be consistent with a two- fluid (normal current-supercurrent) model of weak super-conductivity based on e thermodynamically irreversible process of repetitive phase-slip, and featuring a periodic time dependence in the amplitude of the superconducting order parameter.

The observed linewidth of the AC oscillation could be accounted for by incorporating Johnson noise in the two-fluid model.

Experimentally it was found that the behavior of a short (length on the order of the coherence distance) weak superconductor could be characterized by its critical current and normal-state resistance, and an empirical expression was obtained for the time dependence of the super-current and voltage.

It was found that the results could not be explained on the basis of the theory of the Josephson junction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Matemáticas para Economistas IV es una asignatura cuatrimestral dedicada fundamentalmente a la optimización con convexidad que se ha impartido en los últimos años en el segundo curso de la licenciatura de Economía en la Facultad de Ciencias Económicas y Empresariales de la Universidad del País Vasco. Esta publicación recoge problemas planteados en los exámenes de esta asignatura desde el año 2000 al 2009, en las convocatorias de junio y septiembre.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A reação de transformação de MeOH em olefinas leves foi investigada sobre zeólitas HZSM-5 com razões SiO2/Al2O3 (SAR) iguais a 30, 80 e 280. As propriedades ácidas e texturais da amostra com SAR 30 foram modificadas por impregnação com ácido fosfórico. A caracterização físico-química das amostras foi realizada empregando-se as técnicas de FRX, fisissorção de N2, DRX, DTP de NH3 e IV com adsorção de piridina. O desempenho catalítico das mesmas foi comparado tanto em condições reacionais similares (mesma T, pressão parcial de MeOH e WHSV) como em condições de isoconversão. Verificou-se, que quanto maior a SAR da zeólita, menor a densidade total e a força dos sítios ácidos presentes, sendo este efeito mais significativo para os sítios de Brönsted. O efeito do aumento da SAR favoreceu a estabilidade catalítica e a formação de olefinas leves, principalmente propeno. No caso das amostras contendo fósforo, foi observada uma redução linear na área específica BET e no volume de microporos com o aumento do teor de fósforo. Estes resultados, aliados aos obtidos por DRX, sugerem que a redução mais significativa na área específica e no volume de microporos pode ser associada à redução na cristalinidade e à formação de espécies amorfas contendo fósforo, que bloqueariam a estrutura porosa da zeólita. Não se observou alteração significativa na força dos sítios fracos, enquanto a força dos sítios fortes diminuiu significativamente. As amostras apresentando menor SAR e menor teor de fósforo foram mais ativas. Por outro lado, em condições de isoconversão de 916%, a amostra mais seletiva à formação de olefinas foi aquela com maior SAR. Dentre as amostras impregnadas, aquela contendo 4% de fósforo foi a mais seletiva a propeno, enquanto a que continha 6% foi mais seletiva a eteno. A amostra com SAR igual a 280 foi investigada variando-se a temperatura de reação (400, 500 e 540C) e a pressão parcial de metanol (0,038; 0,083 e 0,123 atm), através de um planejamento experimental do tipo Box-Benhnken (32). O rendimento otimizado em olefinas leves foi alcançado a 480C e 0,08 atm. O modelo proposto descreveu bem os dados experimentais e evidenciou a existência de uma faixa ótima de temperatura para maximização do rendimento em propeno e eteno, o qual foi também afetado pela pressão parcial de MeOH na faixa estudada. Palavras-chave: ZSM-5, olefinas, propeno, eteno, processo MTO, fósforo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

I. Hitzaldia: - Andrés Alberdi (EIMA): EIMA eta ikasmaterialaren kalitatea. - Araceli Diaz de Lezana: Euskarazko terminologiaren normalizazioa: terminología batzordea. - Juan Garzia (EHU, Euskara Zerbitzua): EHUko Euskara Zerbitzua: ereduak ontzeko bideak lantzen. - Antton Gurrutxaga et alii (Elhuyar): Internet, corpusak eta terminología: Internetetik espezialitate-corpusak erauzteko teknikak eta horien ebaluazioa. - Josu Landa: Corpusen iraultza: maiztasunen korapiloa. - UZEI: Euskara juridikoa eta abokatuen hizkuntza-baliabideak. II. Komunikazioak: - Xabier Alberdi (EHU): Kalkoen eragina euskara akademikoaren garapen lexikoan: Lan Zuzenbideko terminología. - Kepa Altonaga (EHU): Arnaut Abadia (1843-1916), gure zientzia-prosaren aurrendari ahaztu bat. - Xabier Arregi, Ana Arruarte, Xabier Artola, Mikel Lersundi, Gotzon Santander eta Joseba Umbellina (IXA): TZOS: Terminologia Zerbitzurako On-line Sistema. - José Ramón Etxebarria (EHU): Matematika eta fisikako zenbait esamolde estandaritzateko proposamena. - Joseba Ezeiza (EHU): DB (Dokumentu Biltegia): corpus akademikoak sortzeko eta kudeatzeko azpiegitura teknologikoa. - Julio García García de los Salmones (EHU): Kalkoaren kontzeptua eta haren terminologia ikasliburuetan eta gramatiketan. - Jacinto Iturbe (EHU): Elementu kimikoen izenen formak hainbat hiztegitan eta gaur eguneko forma kanonikoak. - Itziar San Martín, Igone Zabala eta Joseba Ezeiza (EHU): Aditzetiko izenak erregistro-bereizle gisa: corpus espezializatu baten azterketa morfopragmatikoa. - Igone Zabala eta Agurtzane Elordui (EHU): Nominalizazioa estrategia diskurtsibo gisa: corpus akademikoaren azterketaren beharra.