942 resultados para water quality model


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The severe problems caused by large phytoplankton populations in the River Meuse date back to the beginning of the 1980s. However, no clear relationship can be established between an increase of algal growth and dissolved nutrient concentrations, at least in the Belgian part of the river. Most probably, plankton algae start developing in France, utilizing large inputs of phosphorus from some of the tributaries: this point will be investigated further, as well as the effect of a reduction in the releases of phosphorus. A mathematical model helps to understand the main factors which control algal growth: underwater light, temperature, discharge and grazing by zooplankton. The last is a major loss process in summer and, as shown by recent observations, may trigger a seasonal succession leading to dominance by large phytoplankton taxa. With regard to water quality, eutrophication is a major problem in drinking-water treatment (filter clogging, etc.) and large numbers of decomposing algae may adversely affect the oxygen budget of the river. On the other hand, algal photosynthesis is the most important oxygen source at periods of low discharge, and reduced algal production may result in dramatic oxygen decreases in heavily polluted stretches of the river.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The three Biesbosch Reservoirs are pumped storage reservoirs, fed with rather polluted and highly eutrophic water from the River Meuse. Air injection at the bottom of the reservoirs prevents thermal stratification, which would otherwise result in serious water quality deterioration. Reservoir mixing also serves as an economic algal control measure; mixing over sufficient depth causes light to play the role of limiting factor and this, combined with zooplankton grazing, keeps the biomass of phytoplankton at acceptable levels. Special problems are caused by benthic, geosmin-producing Oscillatoria species growing on the inner embankment. Rooting up the bottom with a harrow is used as the method of control, based on underwater observations by biological staff trained as SCUBA-divers. With regard to pollutant behaviour the three reservoirs act as a series of fully mixed reactors. This enables the application of kinetic models to describe their behaviour and allows the use of a selective intake policy, e.g. for suspended solids with associated contaminants, ammonia and polynuclear aromatic hydrocarbons. A combination of selective intake and self- purification processes - enhanced by the compartmentalisation of the storage volume in three reservoirs - leads to a striking improvement for many water-quality parameters.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

It is widely recognised that conventional culture techniques may underestimate true viable bacterial numbers by several orders of magnitude. The basis of this discrepancy is that a culture in or on media of high nutrient concentration is highly selective (either through ”nutrient shock” or failure to provide vital co-factors) and decreases apparent diversity; thus it is unrepresentative of the natural community. In addition, the non-culturable but viable state (NCBV) is a strategy adopted by some bacteria as a response to environmental stress. The basis for the non-culturable state is that cells placed in conditions present in the environment cannot be recultured but can be shown to maintain their viability. Consequently, these cells would not be detected by standard water quality techniques that are based on culture. In the case of pathogens, it may explain outbreaks of disease in populations that have not come into contact with the pathogen. However, the NCBV state is difficult to attribute, due to the failure to distinguish between NCBV and non-viable cells. This article will describe experiences with the fish pathogen Aeromonas salmonicida subsp. salmonicida and the application of molecular techniques for its detection and physiological analysis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Tastes and odours are amongst the few water quality standards immediately apparent to a consumer and, as a result, account for most consumer complaints about water quality. Although taste and odour problems can arise from a great many sources, from an operational point of view they are either ”predictable” or ”unpredictable”. The former - which include problems related to actinomycete and algal growth - have a tendency to occur in certain types of water under certain combinations of conditions, whereas the latter - typically chemical spills - can occur anywhere. Long-term control is one option for predictable problems, although biomanipulation on a large scale has had utile success. Detection and avoidance is a more practicable option for both predictable and unpredictable problems, particularly if the distribution network can be serviced from other sources. Where these are not feasible, then water treatment, typically using activated carbon, is possible. In general there is a reasonable understanding of what compounds cause taste and odour problems, and how to treat these. An efficient taste and odour control programme therefore relies ultimately on good management of existing resources. However, a number of problems lie outside the remit of water supply companies and will require more fundamental regulation of activities in the catchment.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A constante exploração da água de forma descontrolada tem comprometido a sua qualidade e quantidade para os seus diversos fins, dentre os quais se destaca o uso recreativo por contato primário. O presente estudo levanta um problema frequente no litoral brasileiro: cidades que recebem um elevado número de visitantes em determinados períodos do ano e sofrem crises ambientais por conta da mudança drástica no volume populacional, já que a população flutuante dificulta a gestão de insumos públicos como o abastecimento de água potável, os serviços de saúde, o descarte de lixo e o tratamento de esgoto, sendo muitas vezes responsável por uma poluição local. Nesse sentido, utilizou-se como modelo o balneário de Muriqui, distrito de Mangaratiba, no Estado do Rio de Janeiro, e objetivou-se diagnosticar a poluição hídrica e a balneabilidade da praia. A metodologia empregada para o desenvolvimento desta pesquisa foi baseada em pesquisas bibliográficas, por trabalhos técnico-científicos publicados, livros e instrumentos legais, e em um plano de amostragem. . Foram também realizadas visitas às secretarias municipais para recolher dados atuais sobre o município. Por fim, para confrontar os resultados analíticos obtidos em campo, realizou-se uma investigação da série histórica da pluviosidade das estações pluviométricas mais próximas ao distrito de Muriqui. Para verificar a qualidade da água da praia e dos dois rios que desembocam nela, foi realizado um plano de amostragem com coletas quinzenais, às segundas-feiras pela manhã, entre setembro de 2012 e agosto de 2013, totalizando 25 campanhas. Em cada campanha foram coletados cinco pontos de amostragem: três na praia de Muriqui, um no Rio da Prata e outro no Rio Catumbi. Assim, realizou-se o monitoramento de parâmetros físicos, químicos e biológicos, com o intuito de compará-los aos valores permitidos pelas legislações vigentes e correlacioná-los entre si para verificar o nível de degradação dos corpos hídricos da região. Constatou-se com o estudo que o ponto no Rio da Prata é o mais deteriorado e impactado pela ação antrópica, já que estava localizado mais próximo à sua foz. A avaliação da qualidade da água da praia indicou que o local apresentava condições excelentes de balneabilidade em 96% do período monitorado, apresentando apenas um episódio impróprio para banho. De modo geral, verificou-se com a pesquisa que alguns parâmetros demonstraram episódios característicos de poluição difusa por esgoto sanitário, aparentemente em estado inicial de degradação.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A degradação ambiental do Noroeste do Estado do Rio de Janeiro tem se intensificado nas últimas décadas devido às práticas agrícolas não preservacionistas. Esta situação, que decorre do uso inadequado do solo, tem implicado em mudanças na oferta hídrica em grau variável nos municípios da região com prejuízos econômicos nas atividades dos pequenos e médios proprietários rurais e na qualidade de vida. A abordagem para enfrentar problemas deste tipo depende da participação efetiva das instâncias de governo e dos órgãos responsáveis pela gestão dos recursos hídricos. No âmbito da hidrologia os modelos hidrológicos com base no uso e ocupação do solo são ferramentas que podem auxiliar com ótimo custo e benefício a geração de informações em bacias hidrográficas, instrumentadas ou não. Os modelos são úteis ao planejamento e à tomada de decisão por possibilitarem a previsão de vazões e simulação de cenários sobre o uso do solo e qualidade da água. Neste sentido, o presente estudo pretende dar sua contribuição ao avaliar a adequabilidade do modelo SWAT simular o processo chuva-vazão na microbacia experimental de Santa Maria e Cambiocó, com 13,5 km2, localizada na região hidrográfica do rio Muriaé, afluente do rio Paraíba do Sul. O SWAT tem sido empregado em bacias agrícolas nos EUA, na Europa e, atualmente, na China, sudeste asiático e Irã, entre outros países, e na última década maior inserção no meio acadêmico brasileiro. A versão 2005 do modelo foi utilizada por meio da sua interface SIG para simular as vazões médias diárias com base na precipitação medida no intervalo de 15 minutos no período de 2005/2006. As vazões simuladas foram comparadas com as vazões observadas no exutório da microbacia. Foram testadas as ferramentas de análise de sensibilidade e autocalibração. O método de calibração manual foi usado para o ajuste por tentativa e erro. Os parâmetros ajustados corresponderam ao CN2 e ESCO. Os valores obtidos na calibração para os coeficientes estatísticos R2, NSE, PBIAS e RSR foram 0,80, 0,80, 7,02 e 0,45, respectivamente, indicando escore muito bom, o que foi confirmado pela inspeção dos hidrogramas. As saídas validadas para período diferente da calibração forneceram para os mesmos coeficientes os valores 0,84, 0,80, 25,92 e 0,44. Os dois primeiros, com escore muito bom. O valor de PBIAS, no limite do satisfatório, e RSR, muito bom. O desempenho permitiu concluir que a simulação com o SWAT foi adequada. Em relação às pesquisas que têm sido realizadas no Brasil os valores obtidos para os indicadores foram semelhantes, indicando a capacidade do modelo para novos estudos nesta microbacia que considerem os usos consuntivos e cenários de uso do solo.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

O estudo do fluxo de água e do transporte escalar em reservatórios hidrelétricos é importante para a determinação da qualidade da água durante as fases iniciais do enchimento e durante a vida útil do reservatório. Neste contexto, um código de elementos finitos paralelo 2D foi implementado para resolver as equações de Navier-Stokes para fluido incompressível acopladas a transporte escalar, utilizando o modelo de programação de troca de mensagens, a fim de realizar simulações em um ambiente de cluster de computadores. A discretização espacial é baseada no elemento MINI, que satisfaz as condições de Babuska-Brezzi (BB), que permite uma formulação mista estável. Todas as estruturas de dados distribuídos necessárias nas diferentes fases do código, como pré-processamento, solução e pós-processamento, foram implementadas usando a biblioteca PETSc. Os sistemas lineares resultantes foram resolvidos usando o método da projeção discreto com fatoração LU por blocos. Para aumentar o desempenho paralelo na solução dos sistemas lineares, foi empregado o método de condensação estática para resolver a velocidade intermediária nos vértices e no centróide do elemento MINI separadamente. Os resultados de desempenho do método de condensação estática com a abordagem da solução do sistema completo foram comparados. Os testes mostraram que o método de condensação estática apresenta melhor desempenho para grandes problemas, às custas de maior uso de memória. O desempenho de outras partes do código também são apresentados.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This is the technical report of a hydrogeological assessment of the Delamere sandsheet and environments by the Environment Agency. The overall objective of the study is to carry out Stage 3-appropriate assessment, under the EU Habitats Directive (92/43/EEC), of the influence of activities permitted by the Agency relating to groundwater on candidate Special Areas of Conservation (cSAC). The geology of Delamere area, based on published and collected information is described in Section2. Groundwater flow and water quality are described in Section 3, including sections on groundwater levels, aquifer properties, groundwater discharge and hydrogeochemisty. A water balance for the sandsheet for the period 2001-2002 is presented in Section 4, and the hydrogeological conceptual model of the area is described in Section 5. The assessment of the possible impacts of Agency-permitted groundwater abstractions on Oakmere and Abbots Moss is presented in Section 6 whilst conclusions and recommendations are given in Section 7.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This is the Water Level Management Plan for the Rostherne Mere by the Environment Agency. The purpose of the Plan is to provide a formal basis for managing the land drainage system and water supply system of the area in order to provide a sustainable balance between the conservation and agricultural interest in the area. No changes are proposed to present water level management or maintenance practices unless and until such changes are agreed by all parties. The report contains sections on description of Site, water level management, maintenance, nature conservation, agriculture, fisheries, archaeology, water quality and water resources, development adjacent to watercourses, contingencies and objectives of the Water Level Management.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Two large hydrologic issues face the Kings Basin, severe and chronic overdraft of about 0.16M ac-ft annually, and flood risks along the Kings River and the downstream San Joaquin River. Since 1983, these floods have caused over $1B in damage in today’s dollars. Capturing flood flows of sufficient volume could help address these two pressing issues which are relevant to many regions of the Central Valley and will only be exacerbated with climate change. However, the Kings River has high variability associated with flow magnitudes which suggests that standard engineering approaches and acquisition of sufficient acreage through purchase and easements to capture and recharge flood waters would not be cost effective. An alternative approach investigated in this study, termed On-Farm Flood Flow Capture, involved leveraging large areas of private farmland to capture flood flows for both direct and in lieu recharge. This study investigated the technical and logistical feasibility of best management practices (BMPs) associated with On-Farm Flood Flow Capture. The investigation was conducted near Helm, CA, about 20 miles west of Fresno, CA. The experimental design identified a coordinated plan to determine infiltration rates for different soil series and different crops; develop a water budget for water applied throughout the program and estimate direct and in lieu recharge; provide a preliminary assessment of potential water quality impacts; assess logistical issues associated with implementation; and provide an economic summary of the program. At check locations, we measured average infiltration rates of 4.2 in/d for all fields and noted that infiltration rates decreased asymptotically over time to about 2 – 2.5 in/d. Rates did not differ significantly between the different crops and soils tested, but were found to be about an order of magnitude higher in one field. At a 2.5 in/d infiltration rate, 100 acres are required to infiltrate 10 CFS of captured flood flows. Water quality of applied flood flows from the Kings River had concentrations of COC (constituents of concern; i.e. nitrate, electrical conductivity or EC, phosphate, ammonium, total dissolved solids or TDS) one order of magnitude or more lower than for pumped groundwater at Terranova Ranch and similarly for a broader survey of regional groundwater. Applied flood flows flushed the root zone and upper vadose zone of nitrate and salts, leading to much lower EC and nitrate concentrations to a depth of 8 feet when compared to fields in which more limited flood flows were applied or for which drip irrigation with groundwater was the sole water source. In demonstrating this technology on the farm, approximately 3,100 ac-ft was diverted, primarily from April through mid-July, with about 70% towards in lieu and 30% towards direct recharge. Substantial flood flow volumes were applied to alfalfa, wine grapes and pistachio fields. A subset of those fields, primarily wine grapes and pistachios, were used primarily to demonstrate direct recharge. For those fields about 50 – 75% of water applied was calculated going to direct recharge. Data from the check studies suggests more flood flows could have been applied and infiltrated, effectively driving up the amount of water towards direct recharge. Costs to capture flood flows for in lieu and direct recharge for this project were low compared to recharge costs for other nearby systems and in comparison to irrigating with groundwater. Moreover, the potentially high flood capture capacity of this project suggests significant flood avoidance costs savings to downstream communities along the Kings and San Joaquin Rivers. Our analyses for Terranova Ranch suggest that allocating 25% or more flood flow water towards in lieu recharge and the rest toward direct recharge will result in an economically sustainable recharge approach paid through savings from reduced groundwater pumping. Two important issues need further consideration. First, these practices are likely to leach legacy salts and nitrates from the unsaturated zone into groundwater. We develop a conceptual model of EC movement through the unsaturated zone and estimated through mass balance calculations that approximately 10 kilograms per square meter of salts will be flushed into the groundwater through displacing 12 cubic meters per square meter of unsaturated zone pore water. This flux would increase groundwater salinity but an equivalent amount of water added subsequently is predicted as needed to return to current groundwater salinity levels. All subsequent flood flow capture and recharge is expected to further decrease groundwater salinity levels. Second, the project identified important farm-scale logistical issues including irrigator training; developing cropping plans to integrate farming and recharge activities; upgrading conveyance; and quantifying results. Regional logistical issues also exist related to conveyance, integration with agricultural management, economics, required acreage and Operation and Maintenance (O&M).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Study Goals and Objectives: 1) Improve existing nutrient-related eutrophication assessment methods, updating (from early 1990s to early 2000s) the eutrophication assessment for systems included in the study with the improved method. 2) Develop a human-use/socioeconomic indicator to complement the assessment indicator. The human-use indicator was developed to evaluate costs of nutrient-related degradation in coastal waters and to put the issue into a broader context relevant to the interested public and legislators as well as to scientists. 3) Project objectives included collecting existing water quality data, developing an accessible database appropriate for application to a national study, and applying the assessment methods to 14 coastal systems – nine systems north of Cape Cod and five systems south. The geographical distribution of systems was used to examine potential regional differences in condition. 4) The intent is to use the lessons learned in this pilot study on a national scale to guide completion of an update of the 1999 National Estuarine Eutrophication Assessment.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This report is the second in a series from a project to assess land-based sources of pollution (LBSP) and effects in the St. Thomas East End Reserves (STEER) in St. Thomas, USVI, and is the result of a collaborative effort between NOAA’s National Centers for Coastal Ocean Science, the USVI Department of Planning and Natural Resources, the University of the Virgin Islands, and The Nature Conservancy. Passive water samplers (POCIS) were deployed in the STEER in February 2012. Developed by the US Geological Survey (USGS) as a tool to detect the presence of water soluble contaminants in the environment, POCIS samplers were deployed in the STEER at five locations. In addition to the February 2012 deployment, the results from an earlier POCIS deployment in May 2010 in Turpentine Gut, a perennial freshwater stream which drains to the STEER, are also reported. A total of 26 stormwater contaminants were detected at least once during the February 2012 deployment in the STEER. Detections were high enough to estimate ambient water concentrations for nine contaminants using USGS sampling rate values. From the May 2010 deployment in Turpentine Gut, 31 stormwater contaminants were detected, and ambient water concentrations could be estimated for 17 compounds. Ambient water concentrations were estimated for a number of contaminants including the detergent/surfactant metabolite 4-tert-octylphenol, phthalate ester plasticizers DEHP and DEP, bromoform, personal care products including menthol, indole, n,n-diethyltoluamide (DEET), along with the animal/plant sterol cholesterol, and the plant sterol beta-sitosterol. Only DEHP appeared to have exceeded a water quality guideline for the protection of aquatic organisms.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Technological innovation has made it possible to grow marine finfish in the coastal and open ocean. Along with this opportunity comes environmental risk. As a federal agency charged with stewardship of the nation’s marine resources, the National Oceanic and Atmospheric Administration (NOAA) requires tools to evaluate the benefits and risks that aquaculture poses in the marine environment, to implement policies and regulations which safeguard our marine and coastal ecosystems, and to inform production designs and operational procedures compatible with marine stewardship. There is an opportunity to apply the best available science and globally proven best management practices to regulate and guide a sustainable United States (U.S.) marine finfish farming aquaculture industry. There are strong economic incentives to develop this industry, and doing so in an environmentally responsible way is possible if stakeholders, the public and regulatory agencies have a clear understanding of the relative risks to the environment and the feasible solutions to minimize, manage or eliminate those risks. This report spans many of the environmental challenges that marine finfish aquaculture faces. We believe that it will serve as a useful tool to those interested in and responsible for the industry and safeguarding the health, productivity and resilience of our marine ecosystems. This report aims to provide a comprehensive review of some predominant environmental risks that marine fish cage culture aquaculture, as it is currently conducted, poses in the marine environment and designs and practices now in use to address these environmental risks in the U.S. and elsewhere. Today’s finfish aquaculture industry has learned, adapted and improved to lessen or eliminate impacts to the marine habitats in which it operates. What progress has been made? What has been learned? How have practices changed and what are the results in terms of water quality, benthic, and other environmental effects? To answer these questions we conducted a critical review of the large body of scientific work published since 2000 on the environmental impacts of marine finfish aquaculture around the world. Our report includes results, findings and recommendations from over 420 papers, primarily from peer-reviewed professional journals. This report provides a broad overview of the twenty-first century marine finfish aquaculture industry, with a targeted focus on potential impacts to water quality, sediment chemistry, benthic communities, marine life and sensitive habitats. Other environmental issues including fish health, genetic issues, and feed formulation were beyond the scope of this report and are being addressed in other initiatives and reports. Also absent is detailed information about complex computer simulations that are used to model discharge, assimilation and accumulation of nutrient waste from farms. These tools are instrumental for siting and managing farms, and a comparative analysis of these models is underway by NOAA.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The primary objective of this study was to predict the distribution of mesophotic hard corals in the Au‘au Channel in the Main Hawaiian Islands (MHI). Mesophotic hard corals are light-dependent corals adapted to the low light conditions at approximately 30 to 150 m in depth. Several physical factors potentially influence their spatial distribution, including aragonite saturation, alkalinity, pH, currents, water temperature, hard substrate availability and the availability of light at depth. Mesophotic corals and mesophotic coral ecosystems (MCEs) have increasingly been the subject of scientific study because they are being threatened by a growing number of anthropogenic stressors. They are the focus of this spatial modeling effort because the Hawaiian Islands Humpback Whale National Marine Sanctuary (HIHWNMS) is exploring the expansion of its scope—beyond the protection of the North Pacific Humpback Whale (Megaptera novaeangliae)—to include the conservation and management of these ecosystem components. The present study helps to address this need by examining the distribution of mesophotic corals in the Au‘au Channel region. This area is located between the islands of Maui, Lanai, Molokai and Kahoolawe, and includes parts of the Kealaikahiki, Alalākeiki and Kalohi Channels. It is unique, not only in terms of its geology, but also in terms of its physical oceanography and local weather patterns. Several physical conditions make it an ideal place for mesophotic hard corals, including consistently good water quality and clarity because it is flushed by tidal currents semi-diurnally; it has low amounts of rainfall and sediment run-off from the nearby land; and it is largely protected from seasonally strong wind and wave energy. Combined, these oceanographic and weather conditions create patches of comparatively warm, calm, clear waters that remain relatively stable through time. Freely available Maximum Entropy modeling software (MaxEnt 3.3.3e) was used to create four separate maps of predicted habitat suitability for: (1) all mesophotic hard corals combined, (2) Leptoseris, (3) Montipora and (4) Porites genera. MaxEnt works by analyzing the distribution of environmental variables where species are present, so it can find other areas that meet all of the same environmental constraints. Several steps (Figure 0.1) were required to produce and validate four ensemble predictive models (i.e., models with 10 replicates each). Approximately 2,000 georeferenced records containing information about mesophotic coral occurrence and 34 environmental predictors describing the seafloor’s depth, vertical structure, available light, surface temperature, currents and distance from shoreline at three spatial scales were used to train MaxEnt. Fifty percent of the 1,989 records were randomly chosen and set aside to assess each model replicate’s performance using Receiver Operating Characteristic (ROC), Area Under the Curve (AUC) values. An additional 1,646 records were also randomly chosen and set aside to independently assess the predictive accuracy of the four ensemble models. Suitability thresholds for these models (denoting where corals were predicted to be present/absent) were chosen by finding where the maximum number of correctly predicted presence and absence records intersected on each ROC curve. Permutation importance and jackknife analysis were used to quantify the contribution of each environmental variable to the four ensemble models.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Chesapeake Bay is the largest estuary in the United States. It is a unique and valuable national treasure because of its ecological, recreational, economic and cultural benefits. The problems facing the Bay are well known and extensively documented, and are largely related to human uses of the watershed and resources within the Bay. Over the past several decades as the origins of the Chesapeake’s problems became clear, citizens groups and Federal, State, and local governments have entered into agreements and worked together to restore the Bay’s productivity and ecological health. In May 2010, President Barack Obama signed Executive Order number 13508 that tasked a team of Federal agencies to develop a way forward in the protection and restoration of the Chesapeake watershed. Success of both State and Federal efforts will depend on having relevant, sound information regarding the ecology and function of the system as the basis of management and decision making. In response to the executive order, the National Oceanic and Atmospheric Administration’s National Centers for Coastal Ocean Science (NCCOS) has compiled an overview of its research in Chesapeake Bay watershed. NCCOS has a long history of Chesapeake Bay research, investigating the causes and consequences of changes throughout the watershed’s ecosystems. This document presents a cross section of research results that have advanced the understanding of the structure and function of the Chesapeake and enabled the accurate and timely prediction of events with the potential to impact both human communities and ecosystems. There are three main focus areas: changes in land use patterns in the watershed and the related impacts on contaminant and pathogen distribution and concentrations; nutrient inputs and algal bloom events; and habitat use and life history patterns of species in the watershed. Land use changes in the Chesapeake Bay watershed have dramatically changed how the system functions. A comparison of several subsystems within the Bay drainages has shown that water quality is directly related to land use and how the land use affects ecosystem health of the rivers and streams that enter the Chesapeake Bay. Across the Chesapeake as a whole, the rivers that drain developed areas, such as the Potomac and James rivers, tend to have much more highly contaminated sediments than does the mainstem of the Bay itself. In addition to what might be considered traditional contaminants, such as hydrocarbons, new contaminants are appearing in measurable amounts. At fourteen sites studied in the Bay, thirteen different pharmaceuticals were detected. The impact of pharmaceuticals on organisms and the people who eat them is still unknown. The effects of water borne infections on people and marine life are known, however, and the exposure to certain bacteria is a significant health risk. A model is now available that predicts the likelihood of occurrence of a strain of bacteria known as Vibrio vulnificus throughout Bay waters.