982 resultados para visual object categorization
Resumo:
The visualization of tools and manipulable objects activates motor-related areas in the cortex, facilitating possible actions toward them. This pattern of activity may underlie the phenomenon of object affordance. Some cortical motor neurons are also covertly activated during the recognition of body parts such as hands. One hypothesis is that different subpopulations of motor neurons in the frontal cortex are activated in each motor program; for example, canonical neurons in the premotor cortex are responsible for the affordance of visual objects, while mirror neurons support motor imagery triggered during handedness recognition. However, the question remains whether these subpopulations work independently. This hypothesis can be tested with a manual reaction time (MRT) task with a priming paradigm to evaluate whether the view of a manipulable object interferes with the motor imagery of the subject's hand. The MRT provides a measure of the course of information processing in the brain and allows indirect evaluation of cognitive processes. Our results suggest that canonical and mirror neurons work together to create a motor plan involving hand movements to facilitate successful object manipulation.
Resumo:
A method for determining aflatoxins B1 (AFB1), B2 (AFB2),G1 (AFG1) andG2 (AFG2) in maize with florisil clean up was optimised aiming at one-dimensional thin layer chromatography (TLC) analysis with visual and densitometric quantification. Aflatoxins were extracted with chloroform: water (30:1, v/v), purified through florisil cartridges, separated on TLC plate, detected and quantified by visual and densitometric analysis. The in-house method performance characteristics were determined by using spiked, naturally contaminated maize samples, and certified reference material. The mean recoveries for aflatoxins were 94.2, 81.9, 93.5 and 97.3% in the range of 1.0 to 242 µg/kg for AFB1, 0.3 to 85mg/kg for AFB2, 0.6 to 148mg/kg for AFG1 and 0.6 to 140mg/kg for AFG2, respectively. The correlation values between visual and densitometric analysis for spiked samples were higher than 0.99 for AFB1, AFB2, AFG1 and 0.98 for AFG2. The mean relative standard deviations (RSD) for spiked samples were 16.2, 20.6, 12.8 and 16.9% for AFB1, AFB2, AFG1 and AFG2, respectively. The RSD of the method for naturally contaminated sample (n = 5) was 16.8% for AFB1 and 27.2% for AFB2. The limits of detection of the method (LD) were 0.2, 0.1, 0.1 and 0.1mg/kg and the limits of quantification (LQ) were 1.0, 0.3, 0.6 and 0.6mg/kg for AFB1, AFB2, AFG1 and AFG2, respectively.
Resumo:
This thesis investigates the matter of race in the context of Finnish language acquisition among adult migrants in Finland. Here matter denotes both the materiality of race and how race comes to matter. Drawing primarily on an auto/ethno/graphic account of learning the Finnish language as a participant in the Finnish for foreigners classes, this thesis problematises the ontology and epistemology of race, i.e., what race is, how it is known, and what an engagement with race entails. Taking cues from the bodily practices of learning the Finnish trill or the rolling r, this study proposes a notion of “trilling race” and argues for an onto-epistemological dis/continuity that marks race’s arrival. The notion of dis/continuity reworks the distinction between continuity and discontinuity, and asks about the how of the arrival of any identity, the where, and the when. In so doing, an analysis of “trilling race” engages with one of the major problematics that has exercised much critical attention, namely: how to read race differently. That is, to rethink the conundrum of the need to counter “representational weight” (Puar 2007, 191) of race on the one hand, and to account for the racialised lived realities on the other. The link between a study of the phenomenon of host country language acquisition and an examination of the question of race is not as obvious as it might seem. For example, what does the argument that the process of language learning is racialised actually imply? Does it mean that race, as a process of racialisation or an ongoing configuration of sets of power relations, exerts force from an outside on the otherwise neutral process of learning the host country language? Or does it mean that race, as an identity category, presents as among the analytical perspectives, along with gender and class for instance, of the phenomenon of host country language acquisition? With these questions in mind, and to foreground the examination of the question of race in the context of Finnish language acquisition among adult migrants, this thesis opens with a discussion of the art installation Finnexia by Lisa Erdman. Finnexia is a fictitious drug said to facilitate Finnish language learning through accelerating the cognitive learning process and reducing the anxiety of speaking the Finnish language. Not only does the Finnexia installation make visible the ways in which the lack of skill in Finnish is fgured as the threshold – a border that separates the inside from the outside – to integration, but also, and importantly, it raises questions about the nature of difference, and the process of differentiation that separates the individual from the social, fact from fiction, nature from culture. These puzzles animate much of the analysis in this dissertation. These concerns continue to be addressed in the rest of part one. Whereas chapter two offers a reconsideration of the ambiguities of ethnisme/ethnicity and race, chapter three dilates on the methodological implications of a conception of the dis/continuity of race. Part two focuses on the matter of race and examines the political economy of visual-aural encounters, whereas part three shifts the focus and rethinks the possibilities and limitations of transforming racialised and normative constraints. Taking up these particular problematics, this thesis as a whole argues that race trills itself: its identity/difference is simultaneously made possible and impossible.
Resumo:
Object detection is a fundamental task of computer vision that is utilized as a core part in a number of industrial and scientific applications, for example, in robotics, where objects need to be correctly detected and localized prior to being grasped and manipulated. Existing object detectors vary in (i) the amount of supervision they need for training, (ii) the type of a learning method adopted (generative or discriminative) and (iii) the amount of spatial information used in the object model (model-free, using no spatial information in the object model, or model-based, with the explicit spatial model of an object). Although some existing methods report good performance in the detection of certain objects, the results tend to be application specific and no universal method has been found that clearly outperforms all others in all areas. This work proposes a novel generative part-based object detector. The generative learning procedure of the developed method allows learning from positive examples only. The detector is based on finding semantically meaningful parts of the object (i.e. a part detector) that can provide additional information to object location, for example, pose. The object class model, i.e. the appearance of the object parts and their spatial variance, constellation, is explicitly modelled in a fully probabilistic manner. The appearance is based on bio-inspired complex-valued Gabor features that are transformed to part probabilities by an unsupervised Gaussian Mixture Model (GMM). The proposed novel randomized GMM enables learning from only a few training examples. The probabilistic spatial model of the part configurations is constructed with a mixture of 2D Gaussians. The appearance of the parts of the object is learned in an object canonical space that removes geometric variations from the part appearance model. Robustness to pose variations is achieved by object pose quantization, which is more efficient than previously used scale and orientation shifts in the Gabor feature space. Performance of the resulting generative object detector is characterized by high recall with low precision, i.e. the generative detector produces large number of false positive detections. Thus a discriminative classifier is used to prune false positive candidate detections produced by the generative detector improving its precision while keeping high recall. Using only a small number of positive examples, the developed object detector performs comparably to state-of-the-art discriminative methods.
Resumo:
Advancements in information technology have made it possible for organizations to gather and store vast amounts of data of their customers. Information stored in databases can be highly valuable for organizations. However, analyzing large databases has proven to be difficult in practice. For companies in the retail industry, customer intelligence can be used to identify profitable customers, their characteristics, and behavior. By clustering customers into homogeneous groups, companies can more effectively manage their customer base and target profitable customer segments. This thesis will study the use of the self-organizing map (SOM) as a method for analyzing large customer datasets, clustering customers, and discovering information about customer behavior. Aim of the thesis is to find out whether the SOM could be a practical tool for retail companies to analyze their customer data.
Resumo:
Kilpailuetua tavoittelevan yrityksen pitää kyetä jalostamaan tietoa ja tunnistamaan sen avulla uusia tulevaisuuden mahdollisuuksia. Tulevaisuuden mielikuvien luomiseksi yrityksen on tunnettava toimintaympäristönsä ja olla herkkänä havaitsemaan muutostrendit ja muut toimintaympäristön signaalit. Ympäristön elintärkeät signaalit liittyvät kilpailijoihin, teknologian kehittymiseen, arvomaailman muutoksiin, globaaleihin väestötrendeihin tai jopa ympäristön muutoksiin. Spatiaaliset suhteet ovat peruspilareita käsitteellistää maailmaamme. Pitney (2015) on arvioinut, että 80 % kaikesta bisnesdatasta sisältää jollakin tavoin viittauksia paikkatietoon. Siitä huolimatta paikkatietoa on vielä huonosti hyödynnetty yritysten strategisten päätösten tukena. Teknologioiden kehittyminen, tiedon nopea siirto ja paikannustekniikoiden integroiminen eri laitteisiin ovat mahdollistaneet sen, että paikkatietoa hyödyntäviä palveluja ja ratkaisuja tullaan yhä enemmän näkemään yrityskentässä. Tutkimuksen tavoitteena oli selvittää voiko location intelligence toimia strategisen päätöksenteon tukena ja jos voi, niin miten. Työ toteutettiin konstruktiivista tutkimusmenetelmää käyttäen, jolla pyritään ratkaisemaan jokin relevantti ongelma. Konstruktiivinen tutkimus tehtiin tiiviissä yhteistyössä kolmen pk-yrityksen kanssa ja siihen haastateltiin kuutta eri strategiasta vastaavaa henkilöä. Tutkimuksen tuloksena löydettiin, että location intelligenceä voidaan hyödyntää strategisen päätöksenteon tukena usealla eri tasolla. Yksinkertaisimmassa karttaratkaisussa halutut tiedot tuodaan kartalle ja luodaan visuaalinen esitys, jonka avulla johtopäätöksien tekeminen helpottuu. Toisen tason karttaratkaisu pitää sisällään sekä sijainti- että ominaisuustietoa, jota on yhdistetty eri lähteistä. Tämä toisen tason karttaratkaisu on usein kuvailevaa analytiikkaa, joka mahdollistaa erilaisten ilmiöiden analysoinnin. Kolmannen eli ylimmän tason karttaratkaisu tarjoaa ennakoivaa analytiikkaa ja malleja tulevaisuudesta. Tällöin ohjelmaan koodataan älykkyyttä, jossa informaation keskinäisiä suhteita on määritelty joko tiedon louhintaa tai tilastollisia analyysejä hyödyntäen. Tutkimuksen johtopäätöksenä voidaan todeta, että location intelligence pystyy tarjoamaan lisäarvoa strategisen päätöksenteon tueksi, mikäli yritykselle on hyödyllistä ymmärtää eri ilmiöiden, asiakastarpeiden, kilpailijoiden ja markkinamuutoksien maantieteellisiä eroavaisuuksia. Parhaimmillaan location intelligence -ratkaisu tarjoaa luotettavan analyysin, jossa tieto välittyy muuttumattomana päätöksentekijältä toiselle ja johtopäätökseen johtaneita syitä on mahdollista palata tarkastelemaan tarvittaessa uudelleen.
Resumo:
Kandidaatintyö tehtiin osana PulpVision-tutkimusprojektia, jonka tarkoituksena on kehittää kuvapohjaisia laskenta- ja luokittelumetodeja sellun laaduntarkkailuun paperin valmistuksessa. Tämän tutkimusprojektin osana on aiemmin kehitetty metodi, jolla etsittiin kaarevia rakenteita kuvista, ja tätä metodia hyödynnettiin kuitujen etsintään kuvista. Tätä metodia käytettiin lähtökohtana kandidaatintyölle. Työn tarkoituksena oli tutkia, voidaanko erilaisista kuitukuvista laskettujen piirteiden avulla tunnistaa kuvassa olevien kuitujen laji. Näissä kuitukuvissa oli kuituja neljästä eri puulajista ja yhdestä kasvista. Nämä lajit olivat akasia, koivu, mänty, eukalyptus ja vehnä. Jokaisesta lajista valittiin 100 kuitukuvaa ja nämä kuvat jaettiin kahteen ryhmään, joista ensimmäistä käytettiin opetusryhmänä ja toista testausryhmänä. Opetusryhmän avulla jokaiselle kuitulajille laskettiin näitä kuvaavia piirteitä, joiden avulla pyrittiin tunnistamaan testausryhmän kuvissa olevat kuitulajit. Nämä kuvat oli tuottanut CEMIS-Oulu (Center for Measurement and Information Systems), joka on mittaustekniikkaan keskittynyt yksikkö Oulun yliopistossa. Yksittäiselle opetusryhmän kuitukuvalle laskettiin keskiarvot ja keskihajonnat kolmesta eri piirteestä, jotka olivat pituus, leveys ja kaarevuus. Lisäksi laskettiin, kuinka monta kuitua kuvasta löydettiin. Näiden piirteiden eri yhdistelmien avulla testattiin tunnistamisen tarkkuutta käyttämällä k:n lähimmän naapurin menetelmää ja Naiivi Bayes -luokitinta testausryhmän kuville. Testeistä saatiin lupaavia tuloksia muun muassa pituuden ja leveyden keskiarvoja käytettäessä saavutettiin jopa noin 98 %:n tarkkuus molemmilla algoritmeilla. Tunnistuksessa kuitujen keskimäärinen pituus vaikutti olevan kuitukuvia parhaiten kuvaava piirre. Käytettyjen algoritmien välillä ei ollut suurta vaihtelua tarkkuudessa. Testeissä saatujen tulosten perusteella voidaan todeta, että kuitukuvien tunnistaminen on mahdollista. Testien perusteella kuitukuvista tarvitsee laskea vain kaksi piirrettä, joilla kuidut voidaan tunnistaa tarkasti. Käytetyt lajittelualgoritmit olivat hyvin yksinkertaisia, mutta ne toimivat testeissä hyvin.
Resumo:
Convolutional Neural Networks (CNN) have become the state-of-the-art methods on many large scale visual recognition tasks. For a lot of practical applications, CNN architectures have a restrictive requirement: A huge amount of labeled data are needed for training. The idea of generative pretraining is to obtain initial weights of the network by training the network in a completely unsupervised way and then fine-tune the weights for the task at hand using supervised learning. In this thesis, a general introduction to Deep Neural Networks and algorithms are given and these methods are applied to classification tasks of handwritten digits and natural images for developing unsupervised feature learning. The goal of this thesis is to find out if the effect of pretraining is damped by recent practical advances in optimization and regularization of CNN. The experimental results show that pretraining is still a substantial regularizer, however, not a necessary step in training Convolutional Neural Networks with rectified activations. On handwritten digits, the proposed pretraining model achieved a classification accuracy comparable to the state-of-the-art methods.
Resumo:
Bogotá Emprende
Resumo:
Bogotá Emprende