945 resultados para vehicle trajectory data
Resumo:
The focus of this study is on curriculum change within a School of Nursing in Taiwan where there is a growing demand for educational reform in order to meet the new accreditation standards and demands of the Taiwan Nursing Accreditation Council (TNAC). The aim of this study was to transform the Psychiatric Nursing curriculum in ways that are empowering, generative and sustainable. This study introduced Action Research as a vehicle to bring about curriculum transformation. I conceptualised a framework to guide the transformation process based on the notions of learner-centredness, conceptual change, pedagogical knowledge, reflection, collaboration, reculturing and empowerment. The Action Plan was developed in accordance with the conceptual framework, and was developed in five steps through which team members explored and became aware of our conceptions of teaching and learning, and then planned and implemented actions to change our curriculum, and examined and reflected on the curriculum transformation. The study demonstrated the value of working collaboratively to solve educational problems. This study also suggested that experiential knowledge, when shared and integrated with theoretical knowledge, can constructively contribute to all aspects of curriculum transformation. This study further supported the value of including clinical facilitators in the development and transformation of curricula. It confirmed that academics and clinical facilitators can work together to create new learning for students. This study is significant for both practical and political reasons. Its practical significance lies in its direct utility to the learners and teachers who were involved in the study. The political significance lies in the potential of the study to lead to further changes or improvements in other, similar contexts. The study is limited in that any interpretations cannot be generalised to other contexts. However, what emerged adds to the body of knowledge in such a way that it would constitute the basis for better informed educational practice.
Resumo:
Anxiety disorders have been viewed as manifestations of broad underlying predisposing personality constructs such as neuroticism combined with more specific individual differences of unhelpful information processing styles. Given the high prevalence of anxiety and the significant impairment that it causes, there is an important need to continue to explore successful treatments for this disorder. Research indicates that there is still room for significantly improving attrition rates and treatment adherence. Traditionally Motivational Interviewing (MI) has been used to facilitate health behaviour change. Recently MI has been applied to psychotherapy and has been shown to improve the outcome of CBT. However, these studies have been limited to only considering pre- and post-treatment measures and neglected to consider when changes occur along the course of therapy. This leaves the unanswered question of what is the impact of pre-treatment MI on the treatment trajectory of therapy. This study provides preliminary research into answering this question by tracking changes on a weekly basis along the course of group CBT. Prior to group CBT, 40 individuals with a principal anxiety disorder diagnosis were randomly assigned to receive either 3 individual sessions of MI or placed on a waitlist control group. All participants then received the same dosage of 10 weekly 2 hour sessions of group CBT. Tracking treatment outcome trajectory over the course of CBT, the pre-treatment MI group, compared to the control group, experienced a greater improvement early on in the course of therapy in their symptom distress, interpersonal relationships and quality of life. This early advantage over the control group was then maintained throughout therapy. These results not only demonstrate the value of adding MI to CBT, but also highlight the immediacy of MI effects. Further research is needed to determine the robustness of these effects to inform clinical implications of how to best apply MI to improve treatment adherence to CBT for anxiety disorders.
Resumo:
A Wireless Sensor Network (WSN) is a set of sensors that are integrated with a physical environment. These sensors are small in size, and capable of sensing physical phenomena and processing them. They communicate in a multihop manner, due to a short radio range, to form an Ad Hoc network capable of reporting network activities to a data collection sink. Recent advances in WSNs have led to several new promising applications, including habitat monitoring, military target tracking, natural disaster relief, and health monitoring. The current version of sensor node, such as MICA2, uses a 16 bit, 8 MHz Texas Instruments MSP430 micro-controller with only 10 KB RAM, 128 KB program space, 512 KB external ash memory to store measurement data, and is powered by two AA batteries. Due to these unique specifications and a lack of tamper-resistant hardware, devising security protocols for WSNs is complex. Previous studies show that data transmission consumes much more energy than computation. Data aggregation can greatly help to reduce this consumption by eliminating redundant data. However, aggregators are under the threat of various types of attacks. Among them, node compromise is usually considered as one of the most challenging for the security of WSNs. In a node compromise attack, an adversary physically tampers with a node in order to extract the cryptographic secrets. This attack can be very harmful depending on the security architecture of the network. For example, when an aggregator node is compromised, it is easy for the adversary to change the aggregation result and inject false data into the WSN. The contributions of this thesis to the area of secure data aggregation are manifold. We firstly define the security for data aggregation in WSNs. In contrast with existing secure data aggregation definitions, the proposed definition covers the unique characteristics that WSNs have. Secondly, we analyze the relationship between security services and adversarial models considered in existing secure data aggregation in order to provide a general framework of required security services. Thirdly, we analyze existing cryptographic-based and reputationbased secure data aggregation schemes. This analysis covers security services provided by these schemes and their robustness against attacks. Fourthly, we propose a robust reputationbased secure data aggregation scheme for WSNs. This scheme minimizes the use of heavy cryptographic mechanisms. The security advantages provided by this scheme are realized by integrating aggregation functionalities with: (i) a reputation system, (ii) an estimation theory, and (iii) a change detection mechanism. We have shown that this addition helps defend against most of the security attacks discussed in this thesis, including the On-Off attack. Finally, we propose a secure key management scheme in order to distribute essential pairwise and group keys among the sensor nodes. The design idea of the proposed scheme is the combination between Lamport's reverse hash chain as well as the usual hash chain to provide both past and future key secrecy. The proposal avoids the delivery of the whole value of a new group key for group key update; instead only the half of the value is transmitted from the network manager to the sensor nodes. This way, the compromise of a pairwise key alone does not lead to the compromise of the group key. The new pairwise key in our scheme is determined by Diffie-Hellman based key agreement.
Resumo:
Bicycle injuries, particularly those resulting from single bicycle crashes, are underreported in both police and hospital records. Data on cyclist characteristics and crash circumstances are also often lacking. As a result, the ability to develop comprehensive injury prevention policies is hampered. The aim of this study was to examine the incidence, severity, cyclist characteristics, and crash circumstances associated with cycling injuries in a sample of cyclists in Queensland, Australia. A cross-sectional study of Queensland cyclists was conducted in 2009. Respondents (n=2056) completed an online survey about their cycling experiences, including cycling injuries. Logistic regression modelling was used to examine the associations between demographic and cycling behaviour variables with experiencing cycling injuries in the past year, and, separately, with serious cycling injuries requiring a trip to a hospital. Twenty-seven percent of respondents (n=545) reported injuries, and 6% (n=114) reported serious injuries. In multivariable modelling, reporting an injury was more likely for respondents who had cycled <5 years, compared to ≥10 years (p<0.005); cycled for competition (p=0.01); or experienced harassment from motor vehicle occupants (p<0.001). There were no gender differences in injury incidence, and respondents who cycled for transport did not have an increased risk of injury. Reporting a serious injury was more likely for those whose injury involved other road users (p<0.03). Along with environmental and behavioural approaches for reducing collisions and near-collisions with motor vehicles, interventions that improve the design and maintenance of cycling infrastructure, increase cyclists’ skills, and encourage safe cycling behaviours and bicycle maintenance will also be important for reducing the overall incidence of cycling injuries.
Resumo:
This paper demonstrates the capabilities of wavelet transform (WT) for analyzing important features related to bottleneck activations and traffic oscillations in congested traffic in a systematic manner. In particular, the analysis of loop detector data from a freeway shows that the use of wavelet-based energy can effectively identify the location of an active bottleneck, the arrival time of the resulting queue at each upstream sensor location, and the start and end of a transition during the onset of a queue. Vehicle trajectories were also analyzed using WT and our analysis shows that the wavelet-based energies of individual vehicles can effectively detect the origins of deceleration waves and shed light on possible triggers (e.g., lane-changing). The spatiotemporal propagations of oscillations identified by tracing wavelet-based energy peaks from vehicle to vehicle enable analysis of oscillation amplitude, duration and intensity.
Resumo:
When an organisation becomes aware that one of its products may pose a safety risk to customers, it must take appropriate action as soon as possible or it can be held liable. The ability to automatically trace potentially dangerous goods through the supply chain would thus help organisations fulfill their legal obligations in a timely and effective manner. Furthermore, product recall legislation requires manufacturers to separately notify various government agencies, the health department and the public about recall incidents. This duplication of effort and paperwork can introduce errors and data inconsistencies. In this paper, we examine traceability and notification requirements in the product recall domain from two perspectives: the activities carried out during the manufacturing and recall processes and the data collected during the enactment of these processes. We then propose a workflow-based coordination framework to support these data and process requirements.
Resumo:
Suburbanisation has been internationally a major phenomenon in the last decades. Suburb-to-suburb routes are nowadays the most widespread road journeys; and this resulted in an increment of distances travelled, particularly on faster suburban highways. The design of highways tends to over-simplify the driving task and this can result in decreased alertness. Driving behaviour is consequently impaired and drivers are then more likely to be involved in road crashes. This is particularly dangerous on highways where the speed limit is high. While effective countermeasures to this decrement in alertness do not currently exist, the development of in-vehicle sensors opens avenues for monitoring driving behaviour in real-time. The aim of this study is to evaluate in real-time the level of alertness of the driver through surrogate measures that can be collected from in-vehicle sensors. Slow EEG activity is used as a reference to evaluate driver's alertness. Data are collected in a driving simulator instrumented with an eye tracking system, a heart rate monitor and an electrodermal activity device (N=25 participants). Four different types of highways (driving scenario of 40 minutes each) are implemented through the variation of the road design (amount of curves and hills) and the roadside environment (amount of buildings and traffic). We show with Neural Networks that reduced alertness can be detected in real-time with an accuracy of 92% using lane positioning, steering wheel movement, head rotation, blink frequency, heart rate variability and skin conductance level. Such results show that it is possible to assess driver's alertness with surrogate measures. Such methodology could be used to warn drivers of their alertness level through the development of an in-vehicle device monitoring in real-time drivers' behaviour on highways, and therefore it could result in improved road safety.
Resumo:
Monitoring and assessing environmental health is becoming increasingly important as human activity and climate change place greater pressure on global biodiversity. Acoustic sensors provide the ability to collect data passively, objectively and continuously across large areas for extended periods of time. While these factors make acoustic sensors attractive as autonomous data collectors, there are significant issues associated with large-scale data manipulation and analysis. We present our current research into techniques for analysing large volumes of acoustic data effectively and efficiently. We provide an overview of a novel online acoustic environmental workbench and discuss a number of approaches to scaling analysis of acoustic data; collaboration, manual, automatic and human-in-the loop analysis.
Resumo:
Participatory sensing enables collection, processing, dissemination and analysis of environmental sensory data by ordinary citizens, through mobile devices. Researchers have recognized the potential of participatory sensing and attempted applying it to many areas. However, participants may submit low quality, misleading, inaccurate, or even malicious data. Therefore, finding a way to improve the data quality has become a significant issue. This study proposes using reputation management to classify the gathered data and provide useful information for campaign organizers and data analysts to facilitate their decisions.
Resumo:
Research has demonstrated that driving a vehicle for work is potentially one of the most dangerous workplace activities. Although organisations are required to meet legislative obligations under workplace health and safety in relation to work related vehicle use, organisations are often reluctant to acknowledge and address the risks associated with the vehicle as a workplace. Recent research undertaken investigating the challenges associated with driver and organisational aspects of fleet safety are discussed. This paper provides a risk management framework to assist organisations to meet legislative requirements and reduce the risk associated with vehicle use in the workplace. In addition the paper argues that organisations need to develop and maintain a positive fleet safety culture to proactively mitigate risk in an effort to reduce the frequency and severity of vehicle related incidents within the workplace.