997 resultados para ultrafine particles


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A C–Mn–V steel was used to study ultrafine ferrite formation (1–3 μm) through dynamic strain-induced transformation (DSIT) using hot torsion experiments. A systematic study determined the critical strain for the start of DSIT (C,DSIT), although this may not lead to a fully ultrafine microstructure. Therefore, the strain to produce an ultrafine ferrite (UFF) as final microstructure (C,UFF) during deformation was also determined. In addition, the effect of thermomechanical parameters such as deformation temperature, prior austenite grain size, strain rate and cooling rate on C,DSIT and C,UFF has been evaluated. DSIT ferrite nucleated on prior austenite grain boundaries at an early stage of straining followed by intragranular nucleation at higher strains. The prior austenite grain size affected the distribution of DSIT ferrite nucleation sites at an early stage of transformation and the subsequent coarsening behaviour of the grain boundary and intragranular ferrite grains during post-deformation cooling. Also, C,DSIT and C,UFF increased with an increase in the prior austenite grain size and deformation temperature. The post-deformation cooling had a strong effect not only on C,UFF but also the UFF microstructure (i.e. final ferrite grain size and second phase characteristics).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is now considerable interest in the development of ultrafine grained steels with an average grain size of the order of 1µm. One of the methods with currently the greatest industrial interest is by dynamic strain induced transformation from austenite to ferrite. This involves deformation below the
equilibrium transformation temperature so that transformation occurs during the deformation. However, large strains are required to completely transform the microstructure during deformation. It is potentially possible to activate transformation during deformation then continue transformation
during subsequent cooling. It is shown that there are two critical strains: the first is where dynamic transformation commences and the second is the minimum strain for a fully ultrafine final microstructure after cooling to room temperature. The deformation and potential role of dynamic
recrystallization of the dynamically formed ferrite is also considered. Overall it is clear that for full industrial exploitation there is a need to understand and exploit the competing issues of nucleation, growth and recrystallization of the ferrite by both dynamic and static processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The formation of ultrafine grained steels is an area of intense research around the World. There are a number of methods to produce grain sizes of approximately 1 µm, ranging from extreme thermal and deformation cycles to more typical thermomechanical processes. This paper reviews the status of the production of ultrafine grained steels through relatively simple thermomechanical processing. It is shown that this requires deformation within the Ae3 to Ar3 temperature range for a given alloy. The formation of ultrafine ferrite involves a dynamic transformation of a significant volume fraction of the austenite to ferrite. This dynamic strain induced transformation arises from the introduction of additional intragranular nucleation sites. It is possible that the deformation also hinders the growth or coarsening of the ferrite and may also lead to dynamic recrystallization of the ferrite. The most likely commercial exploitation of ultrafine ferrite would appear to rely on the formation of a critical volume fraction of dynamic strain induced ferrite followed by controlled cooling to ensure this is maintained to room temperature and to also form other secondary phases, such as martensite, bainite and/or retained austenite to improve the formability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The formation of ultrafine ferrite by strain induced transformation is assessed using rolling and hot torsion experiments. These experiments are used to examine the impact of thermomechanical processing conditions and steel chemistry on strain induced austenite to ferrite transformation and the formation of ultrafine ferrite. The critical strain for dynamic strain induced transformation increased with increasing carbon equivalence, deformation temperature and austenite grain size. The deformation structure in the austenite grains changes with the thermomechanical processing conditions. Drawing on these results and the current literature, the important factors for the production of ultrafine ferrite are described and a mechanism is proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper is concerned with the investigation of the effective material properties of internally defective or particle-reinforced composites. An analysis was carried out with a novel method using the two-dimensional special finite element method mixing the concept of equivalent homogeneous materials. A formulation has been developed for a series of special finite elements containing an internal defect or reinforcement in order to assure the high accuracy especially in the vicinity of defects or reinforcements. The adoption of the special finite element can greatly simplify numerical modeling of particle-composites. The numerical result provides the effective material properties of particle-reinforced composite and explains that the size of particles has great influence on the material properties. Numerical examples also demonstrate the validity and versatility of the proposed method by comparing with existing results from literatures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A procedure is proposed to determine, for second-phase particles near a crack tip, the maximum particle stresses at the moment of void initiation by either particle fracture or particle/matrix interface separation. A digital image analysis system is applied to perform a quantitative analysis of corresponding fracture surface regions from stereo image pairs taken in the scanning electron microscope. The fracture surface analysis is used to measure, for individual particles, the crack tip opening displacement at the moment of void initiation and the particle location with respect to the crack tip. From these data, the stress tensor at the moment of void initiation is calculated from the Hutchinson–Rice–Rosengren (HRR) field theory. The corresponding average local stresses within the particle are evaluated by a non-linear Mori–Tanaka-type approach. These stresses are compared to estimates according to the models by Argon et al. [A.S. Argon, J. Im, R. Safoglu, Metall. Trans. 6 (1975) 825] and Beremin [F.M. Beremin, Metall. Trans. 12 (1981) 723]. The procedure is demonstrated on an Al6061–10% Al2O3 metal matrix composite.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, Australian brown coal fly ash particles have been collected from power station and analysed by scanning electron microscopy to obtain morphological information and elemental composition of individual particles. The most common particles found to be the irregular shape particle aggregates. Other shapes include ball shape with smooth surface and with some attachments; and crystal shape fine particles. The X-ray spectra of each fly ash particle revealed five groups of elemental composition, they are Si-rich particles; Ca-rich particles; Fe-rich particles; particles with Mg-Ca Matrix and particles with Si-Ca matrix. A particle sire distribution analysis has been conducted using particle size analyser and found to have a mean particle size of 21fim. The sample then was separated into fine and coarse fractions using aerodynamic classifier, and the elemental composition of both fractions were determined by ICP-AES. Borate fusion and acid dissolution method was used for sample preparation. It is found that some environmental sensitive elements such as Zn, Pb, Ni, K and Cu are enriched in fine fly ash particles. Ca has much higher contents in fine particles as well. Si and Mg have higher concentrations in coarse particles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ultrafine ferrite can be formed in steels through relatively simple thermomechanical processes. The ferrite nucleates intragranularly within the austenite grain on deformation features, which are favoured by heavy shear and large effective strains. It is also possible to produce ultrafine microstructures under multipass deformation conditions, although these may be due to dynamic recovery rather than strain induced transformation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An austenitic Ni-30 wt pct Fe alloy, with a stacking-fault energy and deformation characteristics similar to those of austenitic low-carbon steel at elevated temperatures, has been used to examine the defect substructure within austenite deformed by single-pass strip rolling and to identify those features most likely to provide sites for intragranular nucleation of ultrafine ferrite in steels. Samples of this alloy and a 0.095 wt pct C-1.58Mn-0.22Si-0.27Mo steel have been hot rolled and cooled under similar conditions, and the resulting microstructures were compared using transmission electron microscopy (TEM), electron diffraction, and X-ray diffraction. Following a single rolling pass of ∼40 pct reduction of a 2mm strip at 800 °C, three microstructural zones were identified throughout its thickness. The surface zone (of 0.1 to 0.4 mm in depth) within the steel comprised a uniform microstructure of ultrafine ferrite, while the equivalent zone of a Ni-30Fe alloy contained a network of dislocation cells, with an average diameter of 0.5 to 1.0 µm. The scale and distribution and, thus, nucleation density of the ferrite grains formed in the steel were consistent with the formation of individual ferrite nuclei on cell boundaries within the austenite. In the transition zone, 0.3 to 0.5 mm below the surface of the steel strip, discrete polygonal ferrite grains were observed to form in parallel, and closely spaced “rafts” traversing individual grains of austenite. Based on observations of the equivalent zone of the rolled Ni-30Fe alloy, the ferrite distribution could be correlated with planar defects in the form of intragranular microshear bands formed within the deformed austenite during rolling. Within the central zone of the steel strip, a bainitic microstructure, typical of that observed after conventional hot rolling of this steel, was observed following air cooling. In this region of the rolled Ni-30Fe alloy, a network of microbands was observed, typical of material deformed under plane-strain conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An investigation into the production of ultrafine (1 µm) equiaxed ferrite (UFF) grains in low-carbon steel was made using laboratory rolling, compression dilatometry, and hot torsion techniques. It was found that the hot rolling of thin strip, with a combination of high shear strain and high undercooling, provided the conditions most suitable for the formation of this type of microstructure. Although high strains could be applied in compression and torsion experiments, large volume fractions of UFF were not observed in those samples, possibly due to the lower level of undercooling achieved. It is thought that ferrite refinement was due to a strain-induced transformation process, and that ferrite grains nucleated on parallel and linear deformation bands that traversed austenite grains. These bands formed during the deformation process, and the undercooling provided by the contact between the strip and the work rolls was sufficient to drive the transformation to homogeneous UFF grains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A C-Mn-Nb-Ti steel was deformed by hot torsion to study ultrafine ferrite formation through dynamic strain-induced transformation (DSIT) in conjunction with air cooling. A systematic study was carried out first to evaluate the effect of deformation temperature and prior austenite grain size on the critical strain for ultrafine ferrite formation (ε C,UFF) through single-pass deformation. Then, multiple deformations in the nonrecrystallization region were used to study the effect of thermomechanical parameters (i.e., strain, deformation temperature, etc.) on ε C,UFF. The multiple deformations in the nonrecrystallization region significantly reduced ε C,UFF, although the total equivalent strain for a given thermomechanical condition was higher than that required in single-pass deformation. The current study on a Ni-30Fe austenitic model alloy revealed that laminar microband structures were the key intragranular defects in the austenite for nucleation of ferrite during the hot torsion test. The microbands were refined and overall misorientation angle distribution increased with a decrease in the deformation temperature for a given thermomechanical processing condition. For nonisothermal multipass deformation, there was some contribution to the formation of high-angle microband boundaries from strains at higher temperature, although the strains were not completely additive.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The refinement of ferrite grain size is the most generally accepted approach to simultaneously improve the strength and toughness in steels. Historically, the level of ferrite refinement is limited to 5-10 μm using conventional industrial approaches. Nowadays, though, several thermomechanical processes have been developed to produce ferrite grain sizes of 1-3 μm or less, ranging from extreme thermal and deformation cycles to more typical thermomechanical processes. The present paper reviews the status of the production of ultrafine grained steels through relatively simple thermomechanical processing. This requires deformation within the Ae3 to Ar3 temperature range for a given alloy. Here, the formation of ultrafine ferrite (UFF) involves the dynamic transformation of a significant volume fraction of the austenite to ferrite. This dynamic strain induced transformation (DSIT) arises from the introduction of extensive intragranular nucleation sites that are not present in conventional controlled rolling. The DSIT route has the potential to be adjusted to suit current industrial infrastructure. However, there are a number of significant issues that have been raised, both as gaps in our understanding and as obstacles to industrial implementation. One of the critical issues is that it appears that very large strains are required. Combined with this concern is the issue of whether a combination of dynamic and static transformation can be used to achieve an adequate level of refinement. Another issue that has also become apparent is that grain sizes of 1 μm can lead to low levels of ductility and hence many workers are attempting to obtain 2-3 μm grains, or to introduce a second phase to provide the required ductility. There are also a number of areas of disagreement between authors including the role of dynamic recrystallisation of ferrite in the production of UFF by DSIT, the reasons for the low coarsening rate of UFF grains, the role of microalloying elements and the effects of austenite grain size and strain rate. The present review discusses these areas of controversy and highlights cases where experimental results do not agree.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel approach was used to produce an ultrafine grain structure in low carbon steels with a wide range of hardenability. This included warm deformation of supercooled austenite followed by reheating in the austenite region and cooling (RHA). The ultrafine ferrite structure was independent of steel composition. However, the mechanism of ferrite refinement hanged with the steel quench hardenability. In a relatively low hardenable steel, the ultrafine structure was produced through dynamic strain-induced transformation, whereas the ferrite refinement was formed by static transformation in steels with high quench hardenability. The use of a model Ni–30Fe austenitic alloy revealed that the deformation temperature has a strong effect on the nature of the intragranular defects. There was a transition temperature below which the cell dislocation structure changed to laminar microbands. It appears that the extreme refinement of ferrite is due to the formation of extensive high angle intragranular defects at these low deformation temperatures that then act as sites for static transformation.