945 resultados para two-dimensional capillary electrophoresis
Resumo:
OBJECTIVE: The standard technique of two-dimensional intra-arterial digital subtraction angiography (2D-DSA) for the imaging of experimental rabbit aneurysms is invasive and has considerable surgical risks. Therefore, minimally invasive techniques ideally providing three-dimensional imaging for intervention planning and follow-up are needed. This study evaluates the feasibility and quality of three-dimensional 3-T magnetic resonance angiography (3D-3T-MRA) and compares 3D-3T-MRA with 2D-DSA in experimental aneurysms in the rabbit. METHOD: Three microsurgically created aneurysms in three rabbits were evaluated using 2D-DSA and 3D-3T-MRA. Imaging of the aneurysms was performed 2 weeks after creation using 2D-DSA and contrast-enhanced (CE) MRA. Measurements included aneurysm dome (length and width) and aneurysm neck. Aneurysm volumes were determined using CE-MRA. RESULTS: The measurements of the aneurysms' dimensions and the evaluation of vicinity vessels with both techniques showed a good correlation. The mean aneurysm length, aneurysm width and neck width measured with DSA (6.9, 4.1 and 2.8 mm, respectively) correlated with the measurements performed in 3D-3T-MRA (6.9, 4 and 2.5 mm, respectively). The mean aneurysm volumes measured with CE-MRA was 46.7 mm(3). CONCLUSION: 3D-3T CE-MRA is feasible and less invasive and is a safer imaging alternative to DSA for experimental aneurysm. Additionally, aneurysm technique this precise offers the possibility of repetitive 3D aneurysm volumetry for long-term follow-up studies after endovascular aneurysm occlusion.
Resumo:
PURPOSE: To establish the identity of a prominent protein, approximately 70 kDa, that is markedly increased in the retina of monkeys with experimental glaucoma compared with the fellow control retina, the relationship to glaucoma severity, and its localization in the retina. METHODS: Retinal extracts were subjected to 2-D gel electrophoresis to identify differentially expressed proteins. Purified peptides from the abundant 70 kDa protein were analyzed and identified by liquid chromatography/mass spectrometry/mass spectrometry (LC/MS/MS) separation, and collision-induced dissociation sequencing. Protein identity was performed on MASCOT (Matrix Science, Boston, MA) and confirmed by Western blot. The relationship between the increase in this protein and glaucoma severity was investigated by regression analyses. Protein localization in retina was evaluated by immunohistochemistry with confocal imaging. RESULTS: The abundant protein was identified as Macaca mulatta serum albumin precursor (67 kDa) from eight non-overlapping proteolytic fragments, and the identity was confirmed by Western blot. The average increase in retinal albumin content was 2.3 fold (P = 0.015). In glaucoma eyes, albumin was localized to some neurons of the inner nuclear layer, in the inner plexiform layer, and along the vitreal surface, but it was only found in blood vessels in control retinas. CONCLUSIONS: Albumin is the abundant protein found in the glaucomatous monkey retinas. The increased albumin is primarily localized to the inner retina where oxidative damage associated with experimental glaucoma is known to be prominent. Since albumin is a major antioxidant, the increase of albumin in the retinas of eyes with experimental glaucoma may serve to protect the retina against oxidative damage.
Resumo:
BACKGROUND Current guidelines for evaluating cleft palate treatments are mostly based on two-dimensional (2D) evaluation, but three-dimensional (3D) imaging methods to assess treatment outcome are steadily rising. OBJECTIVE To identify 3D imaging methods for quantitative assessment of soft tissue and skeletal morphology in patients with cleft lip and palate. DATA SOURCES Literature was searched using PubMed (1948-2012), EMBASE (1980-2012), Scopus (2004-2012), Web of Science (1945-2012), and the Cochrane Library. The last search was performed September 30, 2012. Reference lists were hand searched for potentially eligible studies. There was no language restriction. STUDY SELECTION We included publications using 3D imaging techniques to assess facial soft tissue or skeletal morphology in patients older than 5 years with a cleft lip with/or without cleft palate. We reviewed studies involving the facial region when at least 10 subjects in the sample size had at least one cleft type. Only primary publications were included. DATA EXTRACTION Independent extraction of data and quality assessments were performed by two observers. RESULTS Five hundred full text publications were retrieved, 144 met the inclusion criteria, with 63 high quality studies. There were differences in study designs, topics studied, patient characteristics, and success measurements; therefore, only a systematic review could be conducted. Main 3D-techniques that are used in cleft lip and palate patients are CT, CBCT, MRI, stereophotogrammetry, and laser surface scanning. These techniques are mainly used for soft tissue analysis, evaluation of bone grafting, and changes in the craniofacial skeleton. Digital dental casts are used to evaluate treatment and changes over time. CONCLUSION Available evidence implies that 3D imaging methods can be used for documentation of CLP patients. No data are available yet showing that 3D methods are more informative than conventional 2D methods. Further research is warranted to elucidate it.
Resumo:
High-pressure powder X-ray diffraction is a fundamental technique for investigating structural responses to externally applied force. Synchrotron sources and two-dimensional detectors are required. In contrast to this conventional setup, high-resolution beamlines equipped with one-dimensional detectors could offer much better resolved peaks but cannot deliver accurate structure factors because they only sample a small portion of the Debye rings, which are usually inhomogeneous and spotty because of the small amount of sample. In this study, a simple method to overcome this problem is presented and successfully applied to solving the structure of an L-serine polymorph from powder data. A comparison of the obtained high-resolution high-pressure data with conventional data shows that this technique, providing up to ten times better angular resolution, can be of advantage for indexing, for lattice parameter refinement, and even for structure refinement and solution in special cases.
Resumo:
The accurate electron density distribution and magnetic properties of two metal-organic polymeric magnets, the quasi-one-dimensional (1D) Cu(pyz)(NO3)2 and the quasi-two-dimensional (2D) [Cu(pyz)2(NO3)]NO3·H2O, have been investigated by high-resolution single-crystal X-ray diffraction and density functional theory calculations on the whole periodic systems and on selected fragments. Topological analyses, based on quantum theory of atoms in molecules, enabled the characterization of possible magnetic exchange pathways and the establishment of relationships between the electron (charge and spin) densities and the exchange-coupling constants. In both compounds, the experimentally observed antiferromagnetic coupling can be quantitatively explained by the Cu-Cu superexchange pathway mediated by the pyrazine bridging ligands, via a σ-type interaction. From topological analyses of experimental charge-density data, we show for the first time that the pyrazine tilt angle does not play a role in determining the strength of the magnetic interaction. Taken in combination with molecular orbital analysis and spin density calculations, we find a synergistic relationship between spin delocalization and spin polarization mechanisms and that both determine the bulk magnetic behavior of these Cu(II)-pyz coordination polymers.
Resumo:
BACKGROUND The process of neurite outgrowth is the initial step in producing the neuronal processes that wire the brain. Current models about neurite outgrowth have been derived from classic two-dimensional (2D) cell culture systems, which do not recapitulate the topographical cues that are present in the extracellular matrix (ECM) in vivo. Here, we explore how ECM nanotopography influences neurite outgrowth. METHODOLOGY/PRINCIPAL FINDINGS We show that, when the ECM protein laminin is presented on a line pattern with nanometric size features, it leads to orientation of neurite outgrowth along the line pattern. This is also coupled with a robust increase in neurite length. The sensing mechanism that allows neurite orientation occurs through a highly stereotypical growth cone behavior involving two filopodia populations. Non-aligned filopodia on the distal part of the growth cone scan the pattern in a lateral back and forth motion and are highly unstable. Filopodia at the growth cone tip align with the line substrate, are stabilized by an F-actin rich cytoskeleton and enable steady neurite extension. This stabilization event most likely occurs by integration of signals emanating from non-aligned and aligned filopodia which sense different extent of adhesion surface on the line pattern. In contrast, on the 2D substrate only unstable filopodia are observed at the growth cone, leading to frequent neurite collapse events and less efficient outgrowth. CONCLUSIONS/SIGNIFICANCE We propose that a constant crosstalk between both filopodia populations allows stochastic sensing of nanotopographical ECM cues, leading to oriented and steady neurite outgrowth. Our work provides insight in how neuronal growth cones can sense geometric ECM cues. This has not been accessible previously using routine 2D culture systems.
Resumo:
SHP1 is a cytosolic protein tyrosine phosphatase that contains two SH2 domains. It is highly expressed in hematopoietic cells and expressed in normal epithelium at lower levels. While SHP1 in hematopoietic cells is thought to be a negative regulator of cellular signaling by associating with and dephosphorylating various receptors and their downstream effectors after they become activated, its precise function in epithelium remains to be understood. The potential involvement of SHP1 in human tumorigenesis has been hypothesized from the findings that SHP1 can interact with, dephosphorylate, and regulate the activity of several protein tyrosine kinases (PTKs) implicated in human cancer. These PTKs include epidermal growth factor receptor (EGFR) and Src. Such speculation is also supported by the report that SHP1 is overexpressed in human ovarian cancers. ^ Here we report, for the first time, that the levels of SHP1 expression and activity are altered in human breast cancer cells in comparison with normal breast epithelium. In particular, SHP1 expression is nearly lost in the breast cancer cell lines MDA-MB231 and MDA-MB435. After the re-introduction of SHP1 both in wild type (wt) and enzymatically inactive (dn) forms, into the MDA-MB231 cells, we observed no changes in cellular proliferation. However, the overexpression of wt SHP1 led to increased anchorage-independent growth in the MDA-MB231 cells. SHP1 phosphatase activity is essential for such an increase since the overexpression of dn SHP1 had no effect. Enhanced turnorigenicity in nude mice was also observed in the MDA-MB231 cells overexpressing wt SHP1, but not dn SHP1, suggesting the crucial function of SHP1 enzymatic activity in this process. Our observations in this study indicate that SHP1 promotes tumorigenesis by a mechanism or mechanisms apart from enchancing angiogenesis. In addition, we have found no evidence that the overexpression of SHP1 could affect metastatic potential in the MDA-MB231 cells. ^ In the MDA-MB231 cells stably transfected with either wt or dn SHP1 the peak level of EGFR tyrosine phosphorylation induced by EGF, as well as the sensitivity to EGF stimulation, was not altered. However, the overexpression of wt SHP1 led to a slight increase in the kinetics of EGFR dephosphorylation, whereas the overexpression of dn SHP1 led to slightly delayed kinetics of EGFR dephosphorylation. The overexpression of either the wt or dn SHP1 did not lead to any significant increase in Src kinase activity. ^ In NIH3T3 cells, the transient overexpression of SHP1 led to no significant changes in MAP kinase (ERK2) activation by EGF or Akt activation by PDGF. In 3T3H4 cells, the transient overexpression of SHP1 led to no significant changes in MAP kinase (ERK2) activation by heregulin. The transient overexpression of wt SHP1 in the MDA-MB231 cells caused an apparent increase, ranging from 10% to 20%, in the G0/G1 population of the cells with a corresponding decrease in the S phase population. ^ In order to understand the mechanisms by which SHP1 exerts its positive effect on the tumorigenic potential of the MDA-MB231 cells, we employed two-dimensional electrophoresis in an attempt to identify cellular protein(s) with significantly altered tyrosine phosphorylation level upon wt SHP1 overexpression. The overexpression of wt SHP1 but not dn SHP1, leads increased tyrosine phosphorylation of a protein with a molecular weight of approximately 40 kDa and a pI between 5.9 to 6.6. ^
Resumo:
Ocean acidification (OA) is beginning to have noticeable negative impact on calcification rate, shell structure and physiological energy budgeting of several marine organisms; these alter the growth of many economically important shellfish including oysters. Early life stages of oysters may be particularly vulnerable to OA-driven low pH conditions because their shell is made up of the highly soluble form of calcium carbonate (CaCO3) mineral, aragonite. Our long-term CO2 perturbation experiment showed that larval shell growth rate of the oyster species Crassostrea hongkongensis was significantly reduced at pH < 7.9 compared to the control (8.2). To gain new insights into the underlying mechanisms of low-pH-induced delays in larval growth, we have examined the effect of pH on the protein expression pattern, including protein phosphorylation status at the pediveliger larval stage. Using two-dimensional electrophoresis and mass spectrometry, we demonstrated that the larval proteome was significantly altered by the two low pH treatments (7.9 and 7.6) compared to the control pH (8.2). Generally, the number of expressed proteins and their phosphorylation level decreased with low pH. Proteins involved in larval energy metabolism and calcification appeared to be down-regulated in response to low pH, whereas cell motility and production of cytoskeletal proteins were increased. This study on larval growth coupled with proteome change is the first step toward the search for novel Protein Expression Signatures indicative of low pH, which may help in understanding the mechanisms involved in low pH tolerance.
Resumo:
In low-accumulation regions, the reliability of d18O-derived temperature signals from ice cores within the Holocene is unclear, primarily due to the small climate changes relative to the intrinsic noise of the isotopic signal. In order to learn about the representativity of single ice cores and to optimise future ice-core-based climate reconstructions, we studied the stable-water isotope composition of firn at Kohnen station, Dronning Maud Land, Antarctica. Analysing d18O in two 50 m long snow trenches allowed us to create an unprecedented, two-dimensional image characterising the isotopic variations from the centimetre to the hundred-metre scale. This data set includes the complete trench oxygen isotope record together with the meta data used in the study.
Resumo:
Increasing amounts of data is collected in most areas of research and application. The degree to which this data can be accessed, analyzed, and retrieved, is a decisive in obtaining progress in fields such as scientific research or industrial production. We present a novel methodology supporting content-based retrieval and exploratory search in repositories of multivariate research data. In particular, our methods are able to describe two-dimensional functional dependencies in research data, e.g. the relationship between ination and unemployment in economics. Our basic idea is to use feature vectors based on the goodness-of-fit of a set of regression models to describe the data mathematically. We denote this approach Regressional Features and use it for content-based search and, since our approach motivates an intuitive definition of interestingness, for exploring the most interesting data. We apply our method on considerable real-world research datasets, showing the usefulness of our approach for user-centered access to research data in a Digital Library system.
Resumo:
Linear three-dimensional modal instability of steady laminar two-dimensional states developing in a lid-driven cavity of isosceles triangular cross-section is investigated theoretically and experimentally for the case in which the equal sides form a rectangular corner. An asymmetric steady two-dimensional motion is driven by the steady motion of one of the equal sides. If the side moves away from the rectangular corner, a stationary three-dimensional instability is found. If the motion is directed towards the corner, the instability is oscillatory. The respective critical Reynolds numbers are identified both theoretically and experimentally. The neutral curves pertinent to the two configurations and the properties of the respective leading eigenmodes are documented and analogies to instabilities in rectangular lid-driven cavities are discussed.
Resumo:
In this work, a new two-dimensional optics design method is proposed that enables the coupling of three ray sets with two lens surfaces. The method is especially important for optical systems designed for wide field of view and with clearly separated optical surfaces. Fermat’s principle is used to deduce a set of functional differential equations fully describing the entire optical system. The presented general analytic solution makes it possible to calculate the lens profiles. Ray tracing results for calculated 15th order Taylor polynomials describing the lens profiles demonstrate excellent imaging performance and the versatility of this new analytic design method.
Resumo:
The two-dimensional analytic optics design method presented in a previous paper [Opt. Express 20, 5576–5585 (2012)] is extended in this work to the three-dimensional case, enabling the coupling of three ray sets with two free-form lens surfaces. Fermat’s principle is used to deduce additional sets of functional differential equations which make it possible to calculate the lens surfaces. Ray tracing simulations demonstrate the excellent imaging performance of the resulting free-form lenses described by more than 100 coefficients.
Resumo:
In this work, a new two-dimensional analytic optics design method is presented that enables the coupling of three ray sets with two lens profiles. This method is particularly promising for optical systems designed for wide field of view and with clearly separated optical surfaces. However, this coupling can only be achieved if different ray sets will use different portions of the second lens profile. Based on a very basic example of a single thick lens, the Simultaneous Multiple Surfaces design method in two dimensions (SMS2D) will help to provide a better understanding of the practical implications on the design process by an increased lens thickness and a wider field of view. Fermat?s principle is used to deduce a set of functional differential equations fully describing the entire optical system. The transformation of these functional differential equations into an algebraic linear system of equations allows the successive calculation of the Taylor series coefficients up to an arbitrary order. The evaluation of the solution space reveals the wide range of possible lens configurations covered by this analytic design method. Ray tracing analysis for calculated 20th order Taylor polynomials demonstrate excellent performance and the versatility of this new analytical optics design concept.
Resumo:
El trigo blando (Triticum aestivum ssp vulgare L., AABBDD, 2n=6x=42) presenta propiedades viscoélasticas únicas debidas a la presencia en la harina de las prolaminas: gluteninas y gliadinas. Ambos tipos de proteínas forman parte de la red de gluten. Basándose en la movilidad en SDS-PAGE, las gluteninas se clasifican en dos grupos: gluteninas de alto peso molecular (HMW-GS) y gluteninas de bajo peso molecular (LMW-GS). Los genes que codifican para las HMW-GS se encuentran en tres loci del grupo 1 de cromosomas: Glu-A1, Glu-B1 y Glu-D1. Cada locus codifica para uno o dos polipéptidos o subunidades. La variación alélica de las HMW-GS es el principal determinante de de la calidad harino-panadera y ha sido ampliamente estudiado tanto a nivel de proteína como de ADN. El conocimiento de estas proteínas ha contribuido sustancialmente al progreso de los programas de mejora para la calidad del trigo. Comparadas con las HMW-GS, las LMW-GS forman una familia proteica mucho más compleja. La mayoría de los genes LMW se localizan en el grupo 1 de cromosomas en tres loci: Glu-A3, Glu-B3 y Glu-D3 que se encuentran estrechamente ligados a los loci que codifican para gliadinas. El número de copias de estos genes ha sido estimado entre 10-40 en trigo hexaploide, pero el número exacto aún se desconoce debido a la ausencia de un método eficiente para diferenciar los miembros de esta familia multigénica. La nomenclatura de los alelos LMW-GS por electroforesis convencional es complicada, y diferentes autores asignan distintos alelos a la misma variedad lo que dificulta aún más el estudio de esta compleja familia. El uso de marcadores moleculares para la discriminación de genes LMW, aunque es una tarea dificil, puede ser muy útil para los programas de mejora. El objetivo de este trabajo ha sido profundizar en la relación entre las gluteninas y la calidad panadera y desarrollar marcadores moleculares que permitan ayudar en la correcta clasificación de HMW-GS y LMW-GS. Se han obtenido dos poblaciones de líneas avanzadas F4:6 a partir de los cruzamientos entre las variedades ‘Tigre’ x ‘Gazul’ y ‘Fiel’ x ‘Taber’, seleccionándose para los análisis de calidad las líneas homogéneas para HMW-GS, LMW-GS y gliadinas. La determinación alélica de HMW-GS se llevó a cabo por SDS-PAGE, y se complementó con análisis moleculares, desarrollándose un nuevo marcador de PCR para diferenciar entre las subunidades Bx7 y Bx7*del locus Glu-B1. Resumen 2 La determinación alélica para LMW-GS se llevó a cabo mediante SDS-PAGE siguiendo distintas nomenclaturas y utilizando variedades testigo para cada alelo. El resultado no fue concluyente para el locus Glu-B3, así que se recurrió a marcadores moleculares. El ADN de los parentales y de los testigos se amplificó usando cebadores diseñados en regiones conservadas de los genes LMW y fue posteriormente analizado mediante electroforesis capilar. Los patrones de amplificación obtenidos fueron comparados entre las distintas muestras y permitieron establecer una relación con los alelos de LMW-GS. Con este método se pudo aclarar la determinación alélica de este locus para los cuatro parentales La calidad de la harina fue testada mediante porcentaje de contenido en proteína, prueba de sedimentación (SDSS) y alveógrafo de Chopin (parámetros P, L, P/L y W). Los valores fueron analizados en relación a la composición en gluteninas. Las líneas del cruzamiento ‘Fiel’ x ‘Taber’ mostraron una clara influencia del locus Glu-A3 en la variación de los valores de SDSS. Las líneas que llevaban el nuevo alelo Glu-A3b’ presentaron valores significativamente mayores que los de las líneas con el alelo Glu-A3f. En las líneas procedentes del cruzamiento ‘Tigre ’x ‘Gazul’, los loci Glu-B1 y Glu-B3 loci mostraron ambos influencia en los parámetros de calidad. Los resultados indicaron que: para los valores de SDSS y P, las líneas con las HMW-GS Bx7OE+By8 fueron significativamente mejores que las líneas con Bx17+By18; y las líneas que llevaban el alelo Glu-B3ac presentaban valores de P significativamente superiores que las líneas con el alelo Glu-B3ad y significativamente menores para los valores de L . El análisis de los valores de calidad en relación a los fragmentos LMW amplificados, reveló un efecto significativo entre dos fragmentos (2-616 y 2-636) con los valores de P. La presencia del fragmento 2-636 estaba asociada a valores de P mayores. Estos fragmentos fueron clonados y secuenciados, confirmándose que correspondían a genes del locus Glu-B3. El estudio de la secuencia reveló que la diferencia entre ambos se hallaba en algunos SNPs y en una deleción de 21 nucleótidos que en la proteína correspondería a un InDel de un heptapéptido en la región repetida de la proteína. En este trabajo, la utilización de líneas que difieren en el locus Glu-B3 ha permitido el análisis de la influencia de este locus (el peor caracterizado hasta la fecha) en la calidad panadera. Además, se ha validado el uso de marcadores moleculares en la determinación alélica de las LMW-GS y su relación con la calidad panadera. Summary 3 Bread wheat (Triticum aestivum ssp vulgare L., AABBDD, 2n=6x=42) flour has unique dough viscoelastic properties conferred by prolamins: glutenins and gliadins. Both types of proteins are cross-linked to form gluten polymers. On the basis of their mobility in SDS-PAGE, glutenins can be classified in two groups: high molecular weight glutenins (HMW-GS) and low molecular weight glutenins (LMW-GS). Genes encoding HMW-GS are located on group 1 chromosomes in three loci: Glu-A1, Glu-B1 and Glu-D1, each one encoding two polypeptides, named subunits. Allelic variation of HMW-GS is the most important determinant for bread making quality, and has been exhaustively studied at protein and DNA level. The knowledge of these proteins has substantially contributed to genetic improvement of bread quality in breeding programs. Compared to HMW-GS, LMW-GS are a much more complex family. Most genes encoded LMW-GS are located on group 1 chromosomes. Glu-A3, Glu-B3 and Glu-D3 loci are closely linked to the gliadin loci. The total gene copy number has been estimated to vary from 10–40 in hexaploid wheat. However, the exact copy number of LMW-GS genes is still unknown, mostly due to lack of efficient methods to distinguish members of this multigene family. Nomenclature of LMW-GS alleles is also unclear, and different authors can assign different alleles to the same variety increasing confusion in the study of this complex family. The use of molecular markers for the discrimination of LMW-GS genes might be very useful in breeding programs, but their wide application is not easy. The objective of this work is to gain insight into the relationship between glutenins and bread quality, and the developing of molecular markers that help in the allele classification of HMW-GS and LMW-GS. Two populations of advanced lines F4:6 were obtained from the cross ‘Tigre’ x ‘Gazul’ and ‘Fiel’ x ‘Taber’. Lines homogeneous for HMW-GS, LMW-GS and gliadins pattern were selected for quality analysis. The allele classification of HMW-GS was performed by SDS-PAGE, and then complemented by PCR analysis. A new PCR marker was developed to undoubtedly differentiate between two similar subunits from Glu-B1 locus, Bx7 and Bx7*. The allele classification of LMW-GS was initially performed by SDS-PAGE following different established nomenclatures and using standard varieties. The results were not completely concluding for Glu-B3 locus, so a molecular marker system was applied. DNA from parental lines and standard varieties was amplified using primers designed in conserved domains of LMW genes and analyzed by capillary electrophoresis. The pattern of amplification products obtained was compared among samples and related to the protein allele classification. It was possible to establish a correspondence between specific amplification products and almost all LMW alleles analyzed. With this method, the allele classification of the four parental lines was clarified. Flour quality of F4:6 advanced lines were tested by protein content, sedimentation test (SDSS) and alveograph (P, L, P/L and W). The values were analyzed in relation to the lines prolamin composition. In the ‘Fiel’ x ‘Taber’ population, Glu-A3 locus showed an influence in SDSS values. Lines carrying new allele Glu-A3b’, presented a significantly higher SDSS value than lines with Glu-A3f allele. In the ‘Tigre ’x ‘Gazul’ population, the Glu-B1 and Glu-B3 loci also showed an effect in quality parameters, in SDSS, and P and L values. Results indicated that: for SDSS and P, lines with Bx7OE+By8 were significantly better than lines with Bx17+By18; lines carrying Glu-B3ac allele had a significantly higher P values than Glu-B3ad allele values. lines with and lower L The analysis of quality parameters and amplified LMW fragments revealed a significant influence of two peaks (2-616 y 2-636) in P values. The presence of 2-636 peak gave higher P values than 2-616. These fragments had been cloned and sequenced and identified as Glu-B3 genes. The sequence analysis revealed that the molecular difference between them was some SNPs and a small deletion of 21 nucleotides that in the protein would produce an InDel of a heptapeptide in the repetitive region. In this work, the analysis of two crosses with differences in Glu-3 composition has made possible to study the influence of LMG-GS in quality parameters. Specifically, the influence of Glu-B3, the most interesting and less studied loci has been possible. The results have shown that Glu-B3 allele composition influences the alveograph parameter P (tenacity). The existence of different molecular variants of Glu-B3 alleles have been assessed by using a molecular marker method. This work supports the use of molecular approaches in the study of the very complex LMW-GS family, and validates their application in the analysis of advanced recombinant lines for quality studies.