983 resultados para transesterification reaction
Resumo:
In order to investigate the effect of acid properties on the coke behavior and stability of butene aromatization, we prepared the AHZSM-5 samples with various acid properties by the methods of hydrothernial treatment and K addition. The reaction of butene aromatization was carried out at 350 degrees C and 0.5 MPa in a continuous flow fixed bed. The characterization of the fresh/coked catalysts with NH3-TPD, N-2 adsorption-desorption measurement, and TG techniques has shown that a large amount of acid sites (high acid density) of the AHZMS-5 catalyst can cause a large quantity of coke deposit and serious channel blockage, and so result in a rapid loss of aromatization activity. On the contrary, after a great reduction in strong acid sites of AHZSM-5 catalyst resulting from some K-modification, the presence of only many weak acid sites also could not lessen the formation of coke nor improve the reaction stability of butene aromatization. Interestingly, the simultaneous reduction in the strong and weak acid sites to a desirable level by hydrothermal treating the AHZSM-5 catalyst at a proper temperature can effectively suppress the coke formation and channel blockage, and thus improve its olefin aromatization stability. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Microcalorimetric studies of H-2, NH3 and O-2 adsorption, as well as the NH3 decomposition activities evaluation were used to characterize the iridium catalysts for hydrazine decomposition with different supports (Al2O3, SiO,) and iridium contents (1.8, 10.8 and 22.1%). The higher H-2 chemisorption amounts on Ir/Al2O3 catalysts than those on the corresponding Ir/SiO2 counterparts revealed that the strong interaction of iridium and Al2O3 led to higher dispersion of iridium on Ir/Al2O3 catalysts than on Ir/SiO2 catalysts. The larger increase in strong H-2 adsorption sites on highly loaded Ir/Al2O3 than the corresponding Ir/SiO2 ones could be attributed to the interaction not only between iridium atoms but also between iridium and Al2O3. The microcalorimetric results for NH3 adsorption showed that no apparent chemisorption of NH3 existed on Ir/SiO2 catalysts while NH3 chemisorption amounts increased on Ir/Al2O3 catalysts with iridium loadings, which arose from the interaction of the catalysts support of Al2O3 With chloride anion. Both highly dispersed iridium active sites and chloride anion on Ir/Al2O3 catalysts could be beneficial to the intermediate NH3 decomposition in N2H4 decomposition. The similar O-2 plots of differential heat versus normalized coverage on Ir/Al2O3 and Ir/SiO2 catalysts could not be due to the metal-support interaction, but to the formation of strong Ir-O bond. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
A Ni-promoted ligand-free palladium catalyst system for Suzuki coupling of aryl bromides has been developed in high efficiency under mild reaction conditions. It was obtained in situ by introducing NiCl2 to PdCl2/PVP using a parallel high-throughput screening technique. A wide range of aryl bromides bearing a variety of functional groups was evaluated.
Resumo:
The cobalt carbide (Co2C) species was formed in some activated carbon supported cobalt-based (Co/AC) catalysts during the activation of catalysts. It was found that the activity of Fischer-Tropsch reaction over Co-based catalysts decreased due to the formation of cobalt carbide species. Some promoters and pretreatment of activated carbon with steam could restrain the formation of cobalt carbide.
Resumo:
The epoxidation of styrene catalyzed by a reaction-controlled phase transfer catalyst [(C18H37(30%)+C16H33(70%))N(CH3)(3))(3)](3)-[PW4O16] with H2O2 in a biphasic medium was investigated. Under certain conditions, the selectivity for styrene oxide was 95%, the conversion of styrene based on H2O2 was 85%, and the reaction time was less than 1 h. During the reaction, this catalyst powder formed soluble active species by the action of H2O2, was recovered as a precipitate, and was reused after H2O2 was used up. After two times recycling, the catalyst kept almost the same activity.
Resumo:
Pd-supported on WO3-ZrO2 (W/Zr atomic ratio=0.2) calcined at 1073 K was found to be highly active and selective for gas-phase oxidation of ethylene to acetic acid in the presence of water at 423 K and 0.6 MPa. Contact time dependence demonstrated that acetic acid is formed via acetaldehyde formed by a Wacker-type reaction, not through ethanol by hydration of ethylene.
Resumo:
One asymmetric transformation reaction Of L-proline (L-Pro) to D-proline was studied by a home-made capillary array electrophoresis (CAE) for the first time. The aldehyde catalysts and the organic acid solvents for the asymmetric transformation reaction were rapidly screened and the enantiomeric excess values of the asymmetric product Of L-Pro were directly obtained from the electrophoretogram of CAE.