959 resultados para transcription elongation
Resumo:
A method was developed to detect 5' ends of bacterial RNAs expressed at low levels and to differentiate newly initiated transcripts from processed transcripts produced in vivo. The procedure involves use of RNA ligase to link a specific oligoribonucleotide to the 5' ends of cellular RNAs, followed by production of cDNA and amplification of the gene of interest by PCR. The method was used to identify the precise sites of transcription initiation within a 10-kb region of the pheromone-inducible conjugative plasmid pCF10 of Enterococcus faecalis. Results confirmed the 5' end of a very abundant, constitutively produced transcript (from prgQ) that had been mapped previously by primer extension and defined the initiation point of a less abundant, divergently transcribed message (from prgX). The method also showed that the 5' end of a pheromone-inducible transcript (prgB) that had been mapped by primer extension was generated by processing rather than new initiation. In addition, the results provided evidence for two promoters, 3 and 5 kb upstream of prgB, and indicated that only the transcripts originating 5 kb upstream may be capable of extending to prgB.
Resumo:
The bacterium Myxococcus xanthus responds to blue light by producing carotenoids. It also responds to starvation conditions by developing fruiting bodies, where the cells differentiate into myxospores. Each response entails the transcriptional activation of a separate set of genes. However, a single gene, carD, is required for the activation of both light- and starvation-inducible genes. Gene carD has now been sequenced. Its predicted amino acid sequence includes four repeats of a DNA-binding domain present in mammalian high mobility group I(Y) proteins and other nuclear proteins from animals and plants. Other peptide stretches on CarD also resemble functional domains typical of eukaryotic transcription factors, including a very acidic region and a leucine zipper. High mobility group yI(Y) proteins are known to bind the minor groove of A+T-rich DNA. CarD binds in vitro an A+T-rich element that is required for the proper operation of a carD-dependent promoter in vivo.
Resumo:
Transcription factor IIH (TFIIH) is a multisubunit protein complex essential for both the initiation of RNA polymerase class II (pol II)-catalyzed transcription and nucleotide excision repair of DNA. Recent studies have shown that TFIIH copurifies with the cyclin-dependent kinase (cdk)-activating kinase complex (CAK) that includes cdk7, cyclin H, and p36/MAT1. Here we report the isolation of two TFIIH-related complexes: TFIIH* and ERCC2/CAK. TFIIH* consists of a subset of the TFIIH complex proteins including ERCC3 (XPB), p62, p44, p41, and p34 but is devoid of detectable levels of ERCC2 (XPD) and CAK. ERCC2/CAK was isolated as a complex that exhibits CAK activity that cosediments with the three CAK components (cdk7, cyclin H, and p36/MAT1) as well as the ERCC2 (XPD) protein. TFIIH* can support pol II-catalyzed transcription in vitro with lower efficiency compared with TFIIH. This TFIIH*-dependent transcription reaction was stimulated by ERCC2/CAK. The ERCC2/CAK and TFIIH* complexes are each active in DNA repair as shown by their ability to complement extracts prepared from ERCC2 (XPD)- and ERCC3 (XPB)-deficient cells, respectively, in supporting the excision of DNA containing a cholesterol lesion. These data suggest that TFIIH* and ERCC2/CAK interact to form the TFIIH holoenzyme capable of efficiently assembling the pol II transcription initiation complex and directly participating in excision repair reactions.
Resumo:
Replication factor C (RFC, also called Activator I) is part of the processive eukaryotic DNA polymerase holoenzymes. The processive elongation of DNA chains requires that DNA polymerases are tethered to template DNA at primer ends. In eukaryotes the ring-shaped homotrimeric protein, proliferating cell nuclear antigen (PCNA), ensures tight template-polymerase interaction by encircling the DNA strand. Proliferating cell nuclear antigen is loaded onto DNA through the action of RFC in an ATP-dependent reaction. Human RFC is a protein complex consisting of five distinct subunits that migrate through SDS/polyacrylamide gels as protein bands of 140, 40, 38, 37, and 36 kDa. All five genes encoding the RFC subunits have been cloned and sequenced. A functionally identical RFC complex has been isolated from Saccharomyces cerevisiae and the deduced amino acid sequences among the corresponding human and yeast subunits are homologous. Here we report the expression of the five cloned human genes using an in vitro coupled transcription/translation system and show that the gene products form a complex resembling native RFC that is active in supporting an RFC-dependent replication reaction. Studies on the interactions between the five subunits suggest a cooperative mechanism in the assembly of the RFC complex. A three-subunit core complex, consisting of p36, p37, and p40, was identified and evidence is presented that p38 is essential for the interaction between this core complex and the large p140 subunit.
Resumo:
Human transcription factor IIA (TFIIA) is composed of three subunits (alpha, beta, and gamma). TFIIA interacts with the TATA-box binding protein and can overcome repression of transcription. TFIIA was found to be necessary for VP16-mediated transcriptional activation through a coactivator function. We have separated the coactivator and antirepression activities of TFIIA. A TFIIA lacking the alpha subunit was isolated from HeLa cells. This "mini-TFIIA" interacts with the TATA-box binding protein and can overcome repression of transcription, but it is defective in transcriptional coactivator function.
Resumo:
Regulatory protein p4 from Bacillus subtilis phage phi29 activates transcription from the viral late A3 promoter by stabilizing sigmaA-RNA polymerase at the promoter as a closed complex. Activation requires an interaction between protein p4 and RNA polymerase mediated by the protein p4 carboxyl-end, mainly through residue Arg-120. We have obtained derivatives of B. subtilis RNA polymerase alpha subunit with serial deletions at the carboxyl-end and reconstituted RNA polymerase holoenzymes harboring the mutant alpha subunits. Protein p4 promoted the binding of purified B. subtilis RNA polymerase alpha subunit to the A3 promoter in a cooperative way. Binding was abolished by deletion of the last 15 amino acids of the alpha subunit. Reconstituted RNA polymerases with deletions of 15 to 59 residues at the alpha subunit carboxyl-end could recognize and transcribe viral promoters not activated by protein p4, but they had lost their ability to recognize the A3 promoter in the presence of protein p4. In addition, these mutant reconstituted RNA polymerases could not interact with protein p4. We conclude that protein p4 activation of the viral A3 promoter requires an interaction between the carboxyl-end of protein p4 and the carboxyl-end of the alpha subunit of B. subtilis RNA polymerase that stabilizes the RNA polymerase at the promoter.
Resumo:
We describe a fractionation and purification scheme for the Drosophila RNA polymerase II general transcription factors. Drosophila TFIIE, TFIIF, TFIIH, and RNA polymerase II have been purified to greater than 50% homogeneity from Drosophila embryo nuclear extracts. TFIID has been purified 80-fold and is not significantly contaminated with any of the other general factors. This is the first reported identification and purification of Drosophila TFIIH and TFIIE. Further analysis shows that, similar to their mammalian counterparts, Drosophila TFIIH is composed of eight polypeptides sized between 30 and 100 kDa, and Drosophila TFIIE is composed of two polypeptides sized at 34 and 60 kDa. When all of these fractions are combined with recombinant Drosophila TFlIB, a highly purified in vitro transcription system is generated that has not previously been available in Drosophila. The TFIID fraction can be replaced with recombinant Drosophila TBP to give a transcription system that is nearly free of contaminating proteins.
Resumo:
Stage specific activator protein (SSAP) is a member of a newly discovered class of transcription factors that contain motifs more commonly found in RNA-binding proteins. Previously, we have shown that SSAP specifically binds to its recognition sequence in both the double strand and the single strand form and that this DNA-binding activity is localized to the N-terminal RNA recognition motif domain. Three copies of this recognition sequence constitute an enhancer element that is directly responsible for directing the transcriptional activation of the sea urchin late histone H1 gene at the midblastula stage of embryogenesis. Here we show that the remainder of the SSAP polypeptide constitutes an extremely potent bipartite transcription activation domain that can function in a variety of mammalian cell lines. This activity is as much as 3 to 5 times stronger than VP16 at activating transcription and requires a large stretch of amino acids that contain glutamine-glycine rich and serine-threonine-basic amino acid rich regions. We present evidence that SSAP's activation domain shares targets that are also necessary for activation by E1a and VP16. Finally, SSAP's activation domain is found to participate in specific interactions in vitro with the basal transcription factors TATA-binding protein, TFIIB, TFIIF74, and dTAF(II) 110.
Resumo:
Sequence specific regulators of eukaryotic gene expression, axiomatically, act through double stranded DNA targets. Proteins that recognize DNA cis-elements as single strands but for which compelling evidence has been lacking to indicate in vivo involvement in transcription are orphaned in this scheme. We sought to determine whether sequence specific single strand binding proteins can find their cognate elements and modify transcription in vivo by studying heterogeneous nuclear ribonucleoprotein K (hnRNP K), which binds the single stranded sequence (CCCTCCCCA; CT-element) of the human c-myc gene in vitro. To monitor its DNA binding in vivo, the ability of hnRNP K to activate a reporter gene was amplified by fusion with the VP16 transactivation domain. This chimeric protein was found to transactivate circular but not linear CT-element driven reporters, suggesting that hnRNP K recognizes a single strand region generated by negative supercoiling in circular plasmid. When CT-elements were engineered to overlap with lexA operators, addition of lexA protein, either in vivo or in vitro, abrogated hnRNP K binding most likely by preventing single strand formation. These results not only reveal hnRNP K to be a single strand DNA binding protein in vivo, but demonstrate how a segment of DNA may modify the transcriptional activity of an adjacent gene through the interconversion of duplex and single strands.
Resumo:
The transcription factors c-myb and GATA-2 are both required for blood cell development in vivo and in vitro. However, very little is known on their mechanism(s) of action and whether they impact on complementary or overlapping pathways of hematopoietic proliferation and differentiation. We report here that embryonic stem (ES) cells transfected with c-myb or GATA-2 cDNAs, individually or in combination, underwent hematopoietic commitment and differentiation in the absence of added hematopoietic growth factors but that stimulation with c-kit and flt-3 ligands enhanced colony formation only in the c-myb transfectants. This enhancement correlated with c-kit and flt-3 surface receptor up-regulation in c-myb-(but not GATA-2-) transfected ES cells. Transfection of ES cells with either a c-myb or a GATA-2 antisense construct abrogated erythromyeloid colony-forming ability in methyl cellulose; however, introduction of a full-length GATA-2 or c-myb cDNA, respectively, rescued the hematopoiesis-deficient phenotype, although only c-myb-rescued ES cells expressed c-kit and flt-3 surface receptors and formed increased numbers of hematopoietic colonies upon stimulation with the cognate ligands. These results are in agreement with previous studies indicating a fundamental role of c-myb and GATA-2 in hematopoiesis. Of greater importance, our studies suggest that GATA-2 and c-myb exert their roles in hematopoietic gene regulation through distinct mechanisms of action in nonoverlapping pathways.
Resumo:
The ob gene product, leptin, apparently exclusively expressed in adipose tissue, is a signaling factor regulating body weight homeostasis and energy balance. ob gene expression is increased in obese rodents and regulated by feeding, insulin, and glucocorticoids, which supports the concept that ob gene expression is under hormonal control, which is expected for a key factor controlling body weight homeostasis and energy balance. In humans, ob mRNA expression is increased in gross obesity; however, the effects of the above factors on human ob expression are unknown. We describe the structure of the human ob gene and initial functional analysis of its promoter. The human ob gene's three exons cover approximately 15 kb of genomic DNA. The entire coding region is contained in exons 2 and 3, which are separated by a 2-kb intron. The first small 30-bp untranslated exon is located >10.5 kb upstream of the initiator ATG codon. Three kilobases of DNA upstream of the transcription start site has been cloned and characterized. Only 217 bp of 5' sequence are required for basal adipose tissue-specific expression of the ob gene as well as enhanced expression by C/EBPalpha. Mutation of the single C/EBPalpha site in this region abolished inducibility of the promoter by C/EBPalpha in cotransfection assays. The gene structure will facilitate our analysis of ob mutations in human obesity, whereas knowledge of sequence elements and factors regulating ob gene expression should be of major importance in the prevention and treatment of obesity.
Resumo:
Notch is a transmembrane receptor that plays a critical role in cell fate determination. In Drosophila, Notch binds to and signals through Suppressor of Hairless. A mammalian homologue of Suppressor of Hairless, named CBF1 (or RBPJk), is a ubiquitous transcription factor whose function in mammalian Notch signaling is unknown. To determine whether mammalian Notch can stimulate transcription through a CBF1-responsive element (RE), we cotransfected a CBF1-RE-containing chloramphenicol acetyltransferase reporter and N1(deltaEC), a constitutively active form of human Notch1 lacking the extracellular domain, into DG75, COS-1, HeLa, and 293T cells, which all contain endogenous CBF1. N1(deltaEC) dramatically increased chloramphenicol acetyltransferase activity in these cells, indicating functional coupling of Notch1 and CBF1. The activity was comparable to that produced by the Epstein-Barr virus protein EBNA2, a well-characterized, potent transactivator of CBF1. To test whether CBF1 and Notch1 interact physically, we tagged CBF1 with an epitope from the influenza virus hemagglutinin or with the N-terminal domain of gal4, and transfected the tagged CBF1 plus N1(deltaEC) into COS-1 cells. Cell lysates were immunoprecipitated and immunoblotted with several anti-Notch1 antibodies [to detect N1(deltaEC)] or with antibodies to hemagglutinin or gal4 (to detect CBF1). Each immunoprecipitate contained a complex of N1(deltaEC) and CBF1. In summary, we find that the truncated, active form of human Notch1, N1(deltaEC), binds CBF1 and activates transcription through a CBF1-RE-containing promoter. We conclude that CBF1 is a critical downstream protein in the human Notch1 signaling pathway.
Resumo:
The mechanism by which elongation factor G (EF-G) catalyzes the translocation of tRNAs and mRNA on the ribosome is not known. The reaction requires GTP, which is hydrolyzed to GDP. Here we show that EF-G from Escherichia coli lacking the G domain still catalyzed partial translocation in that it promoted the transfer of the 3' end of peptidyl-tRNA to the P site on the 50S ribosomal subunit into a puromycin-reactive state in a slow-turnover reaction. In contrast, it did not bring about translocation on the 30S subunit, since (i) deacylated tRNA was not released from the P site and (ii) the A site remained blocked for aminoacyl-tRNA binding during and after partial translocation. The reaction probably represents the first EF-G-dependent step of translocation that follows the spontaneous formation of the A/P state that is not puromycin-reactive [Moazed, D. & Noller, H. F. (1989) Nature (London) 342, 142-148]. In the complete system--i.e., with intact EF-G and GTP--the 50S phase of translocation is rapidly followed by the 30S phase during which the tRNAs together with the mRNA are shifted on the small ribosomal subunit, and GTP is hydrolyzed. As to the mechanism of EF-G function, the results show that the G domain has an important role, presumably exerted through interactions with other domains of EF-G, in the promotion of translocation on the small ribosomal subunit. The G domain's intramolecular interactions are likely to be modulated by GTP binding and hydrolysis.
Resumo:
The RNA polymerase II and III small nuclear RNA (snRNA) promoters contain a common basal promoter element, the proximal sequence element (PSE). The PSE binds a multisubunit complex we refer to as the snRNA activating protein complex (SNAPc). At least four polypeptides are visible in purified SNAPc preparations, which migrate with apparent molecular masses of 43, 45, 50, and 190 kDa on SDS/polyacrylamide gels. In addition, purified preparations of SNAPc contain variable amounts of TATA box binding protein (TBP). An important question is whether the PSEs of RNA polymerase II and III snRNA promoters recruit the exact same SNAP complex or slightly different versions of SNAPc, differing, for example, by the presence or absence of a subunit. To address this question, we are isolating cDNAs encoding different subunits of SNAPc. We have previously isolated the cDNA encoding the 43-kDa subunit SNAP43. We now report the isolation of the cDNA that encodes the p45 polypeptide. Antibodies directed against p45 retard the mobility of the SNAPc-PSE complex in an electrophoretic mobility shift assay, indicating that p45 is indeed part of SNAPc. We therefore refer to this protein as SNAP45. SNAP45 is exceptionally proline-rich, interacts strongly with TBP, and, like SNAP43, is required for both RNA polymerase II and III transcription of snRNA genes.
Resumo:
The terminal deoxynucleotidyltransferase (TdT) gene encodes a template-independent DNA polymerase that is expressed exclusively in immature lymphocytes. The TdT promoter lacks a TATA box, but an initiator element (Inr) overlaps the transcription start site. The Inr directs basal transcription and also mediates activated transcription in conjunction with an upstream element called D'. We have begun to address the fundamental question of why the TdT promoter contains an Inr rather than a TATA box. First, we tested the possibility that the TdT promoter lacks a TATA box because the -30 region is needed for the binding of an essential regulator. Mutations were introduced into the -30 region, and the mutants were tested in transient transfection and in vitro transcription assays. The mutations had only minor effects on promoter strength, suggesting that this first hypothesis is incorrect. Next, the effect of inserting a TATA box within the -30 region was tested. Although the TATA box enhanced promoter strength, appropriate regulation appeared to be maintained, as transcription in lymphocytes remained dependent on the D' element. Finally, a promoter variant containing a TATA box at -30, but a mutant Inr, was tested. Surprisingly, transcription from this variant, both in vitro and in vivo, was dramatically reduced. These results suggest that the TdT promoter, and possibly other natural promoters, contain an Inr element because one or more activator proteins that interact with surrounding control elements preferentially function in its presence.