1000 resultados para tonische Inhibition


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent studies support the notion that statins, widely prescribed cholesterol-lowering agents, may target key elements in the immunological cascade leading to inflammation and tissue damage in the pathogenesis of multiple sclerosis (MS). Compelling experimental and observational clinical studies highlighted the possibility that statins may also exert immunomodulatory synergy with approved MS drugs, resulting in several randomized clinical trials testing statins in combination with interferon-beta (IFN-?). Some data, however, suggest that this particular combination may not be clinically beneficial, and might actually have a negative effect on the disease course in some patients with MS. In this regard, a small North American trial indicated that atorvastatin administered in combination with IFN-? may increase disease activity in relapsing-remitting MS. Although other trials did not confirm this finding, the enthusiasm for studies with statins dwindled. This review aims to provide a comprehensive overview of the completed clinical trials and reports of the interim analyses evaluating the combination of IFN-? and statins in MS. Moreover, we try to address the evident question whether usage of this combination routinely requires caution, since the number of IFN-?-treated MS patients receiving statins for lowering of cholesterol is expected to grow.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pneumococcal meningitis causes neurological sequelae, including learning and memory deficits in up to half of the survivors. In both humans and in animal models of the disease, there is apoptotic cell death in the hippocampus, a brain region involved in learning and memory function. We previously demonstrated that in an infant rat model of pneumococcal meningitis, there is activation of the kynurenine (KYN) pathway in the hippocampus, and that there was a positive correlation between the concentration of 3-hydroxykynurenine and the extent of hippocampal apoptosis. To clarify the role of the KYN pathway in the pathogenesis of hippocampal apoptosis in pneumococcal meningitis, we specifically inhibited 2 key enzymes of the KYN pathway and assessed hippocampal apoptosis, KYN pathway metabolites, and nicotinamide adenine dinucleotide (NAD) concentrations by high-performance liquid chromatography. Pharmacological inhibition of kynurenine 3-hydroxylase and kynureninase led to decreased cellular NAD levels and increased apoptosis in the hippocampus. The cerebrospinal fluid levels of tumor necrosis factor and interleukin-1? and -? were not affected. Our data suggest that activation of the KYN pathway in pneumococcal meningitis is neuroprotective by compensating for an increased NAD demand caused by infection and inflammation;this mechanism may prevent energy failure and apoptosis in the hippocampus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The function of antigen-specific CD8+ T cells, which may protect against both infectious and malignant diseases, can be impaired by ligation of their inhibitory receptors, which include CTL-associated protein 4 (CTLA-4) and programmed cell death 1 (PD-1). Recently, B and T lymphocyte attenuator (BTLA) was identified as a novel inhibitory receptor with structural and functional similarities to CTLA-4 and PD-1. BTLA triggering leads to decreased antimicrobial and autoimmune T cell responses in mice, but its functions in humans are largely unknown. Here we have demonstrated that as human viral antigen-specific CD8+ T cells differentiated from naive to effector cells, their surface expression of BTLA was gradually downregulated. In marked contrast, human melanoma tumor antigen-specific effector CD8+ T cells persistently expressed high levels of BTLA in vivo and remained susceptible to functional inhibition by its ligand herpes virus entry mediator (HVEM). Such persistence of BTLA expression was also found in tumor antigen-specific CD8+ T cells from melanoma patients with spontaneous antitumor immune responses and after conventional peptide vaccination. Remarkably, addition of CpG oligodeoxynucleotides to the vaccine formulation led to progressive downregulation of BTLA in vivo and consequent resistance to BTLA-HVEM-mediated inhibition. Thus, BTLA activation inhibits the function of human CD8+ cancer-specific T cells, and appropriate immunotherapy may partially overcome this inhibition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CD34 (+) progenitor cells are a promising source of regeneration in atherosclerosis or ischemic heart disease. However, as recently published, CD34(+) progenitor cells have the potential to differentiate not only into endothelial cells but also into foam cells upon interaction with platelets. The mechanism of platelet-induced differentiation of progenitor cells into foam cells is as yet unclear. In the present study we investigated the role of scavenger receptor (SR)-A and CD36 in platelet-induced foam cell formation. Human CD34(+) progenitor cells were freshly derived from human umbilical veins and were co-incubated with platelets (2 x 10(8)/mL) up to 14 days resulting in large lipid-laden foam cells. Developing macrophages expressed SR-A, CD36, and Lox-1 as measured by fluorescent-activated cell sorting analysis. The presence of a blocking anti-CD36 or anti-SR-A antibody nearly abrogated foam cell formation, whereas anti-Lox-1 did not affect foam cell formation. Consistently blocking either anti-CD36 or anti-SR-A antibody significantly reduced the phagocytosis of lipid-laden platelets by macrophages. We conclude that CD36 and SR-A play an important role in platelet-induced foam cell formation from CD34(+) progenitor cells and thus represent a promising target to inhibit platelet-induced foam cell formation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abnormal activation of cellular DNA repair pathways by deregulated signaling of receptor tyrosine kinase systems has broad implications for both cancer biology and treatment. Recent studies suggest a potential link between DNA repair and aberrant activation of the hepatocyte growth factor receptor Mesenchymal-Epithelial Transition (MET), an oncogene that is overexpressed in numerous types of human tumors and considered a prime target in clinical oncology. Using the homologous recombination (HR) direct-repeat direct-repeat green fluorescent protein ((DR)-GFP) system, we show that MET inhibition in tumor cells with deregulated MET activity by the small molecule PHA665752 significantly impairs in a dose-dependent manner HR. Using cells that express MET-mutated variants that respond differentially to PHA665752, we confirm that the observed HR inhibition is indeed MET-dependent. Furthermore, our data also suggest that decline in HR-dependent DNA repair activity is not a secondary effect due to cell cycle alterations caused by PHA665752. Mechanistically, we show that MET inhibition affects the formation of the RAD51-BRCA2 complex, which is crucial for error-free HR repair of double strand DNA lesions, presumably via downregulation and impaired translocation of RAD51 into the nucleus. Taken together, these findings assist to further support the role of MET in the cellular DNA damage response and highlight the potential future benefit of MET inhibitors for the sensitization of tumor cells to DNA damaging agents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

NK cells express toll-like receptors (TLR) that recognize conserved pathogen or damage associated molecular patterns and play a fundamental role in innate immunity. Low molecular weight dextran sulfate (DXS), known to inhibit the complement system, has recently been reported by us to inhibit TLR4-induced maturation of human monocyte-derived dendritic cells (MoDC). In this study, we investigated the capability of DXS to interfere with human NK cell activation triggered directly by TLR2 agonists or indirectly by supernatants of TLR4-activated MoDC. Both TLR2 agonists and supernatants of TLR4-activated MoDC activated NK cells phenotypically, as demonstrated by the analysis of NK cell activation markers (CD56, CD25, CD69, NKp30, NKp44, NKp46, DNAM-1 and NKG2D), and functionally as shown by increased NK cell degranulation (CD107a surface expression) and IFN-gamma secretion. DXS prevented the up-regulation of NK cell activation markers triggered by TLR2 ligands or supernatants of TLR4-activated MoDC and dose-dependently abrogated NK cell degranulation and IFN-gamma secretion. In summary our results suggest that DXS may be a useful reagent to inhibit the direct and indirect TLR-mediated activation of NK cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has been suggested that participant withdrawal from studies can bias estimates. However, this is only possible when withdrawers and nonwithdrawers differ in an important way. We tested the hypothesis that withdrawers are more likely than nonwithdrawers to be avoidant and negatively affected.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To make an antisaccade away from a stimulus, one must also suppress the more reflexive prosaccade to the stimulus. Whether this inhibition is diffuse or specific for saccade direction is not known. We used a paradigm examining inter-trial carry-over effects. Twelve subjects performed sequences of four identical antisaccades followed by sequences of four prosaccades randomly directed at the location of the antisaccade stimulus, the location of the antisaccade goal, or neutral locations. We found two types of persistent antisaccade-related inhibition. First, prosaccades in any direction were delayed only in the first trial after the antisaccades. Second, prosaccades to the location of the antisaccade stimulus were delayed more than all other prosaccades, and this persisted from the first to the fourth subsequent trial. These findings are consistent with both a transient global inhibition and a more sustained focal inhibition specific for the location of the antisaccade stimulus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Estrogen treatment exerts a protective effect on experimental autoimmune encephalomyelitis (EAE) and is under clinical trial for multiple sclerosis therapy. Estrogens have been suspected to protect from CNS autoimmunity through their capacity to exert anti-inflammatory as well as neuroprotective effects. Despite the obvious impacts of estrogens on the pathophysiology of multiple sclerosis and EAE, the dominant cellular target that orchestrates the anti-inflammatory effect of 17β-estradiol (E2) in EAE is still ill defined. Using conditional estrogen receptor (ER) α-deficient mice and bone marrow chimera experiments, we show that expression of ERα is critical in hematopoietic cells but not in endothelial ones to mediate the E2 inhibitory effect on Th1 and Th17 cell priming, resulting in EAE protection. Furthermore, using newly created cell type-specific ERα-deficient mice, we demonstrate that ERα is required in T lymphocytes, but neither in macrophages nor dendritic cells, for E2-mediated inhibition of Th1/Th17 cell differentiation and protection from EAE. Lastly, in absence of ERα in host nonhematopoietic tissues, we further show that ERα signaling in T cells is necessary and sufficient to mediate the inhibitory effect of E2 on EAE development. These data uncover T lymphocytes as a major and nonredundant cellular target responsible for the anti-inflammatory effects of E2 in Th17 cell-driven CNS autoimmunity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Topographically organized neurons represent multiple stimuli within complex visual scenes and compete for subsequent processing in higher visual centers. The underlying neural mechanisms of this process have long been elusive. We investigate an experimentally constrained model of a midbrain structure: the optic tectum and the reciprocally connected nucleus isthmi. We show that a recurrent antitopographic inhibition mediates the competitive stimulus selection between distant sensory inputs in this visual pathway. This recurrent antitopographic inhibition is fundamentally different from surround inhibition in that it projects on all locations of its input layer, except to the locus from which it receives input. At a larger scale, the model shows how a focal top-down input from a forebrain region, the arcopallial gaze field, biases the competitive stimulus selection via the combined activation of a local excitation and the recurrent antitopographic inhibition. Our findings reveal circuit mechanisms of competitive stimulus selection and should motivate a search for anatomical implementations of these mechanisms in a range of vertebrate attentional systems.