979 resultados para titanium


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of the ultrafine crystallinity of commercial purity grade 2 (as-received) titanium and titanium modified by equal channel angular pressing (modified titanium) on bacterial attachment was studied. A topographic profile analysis of the surface of the modified titanium revealed a complex morphology of the surface. Its prominent micro- and nano-scale features were 100-200-nm-scale undulations with 10-15 microm spacing. The undulating surfaces were nano-smooth, with height variations not exceeding 5-10 nm. These surface topography characteristics were distinctly different from those of the as-received samples, where broad valleys (up to 40-60 microm) were detected, whose inner surfaces exhibited asperities approximately 100 nm in height spaced at 1-2 microm. It was found that each of the three bacteria strains used in this study as adsorbates, viz. Staphylococcus aureus CIP 68.5, Pseudomonas aeruginosa ATCC 9025 and Escherichia coli K12, responded differently to the two types of titanium surfaces. Extreme grain refinement by ECAP resulted in substantially increased numbers of cells attached to the surface compared to as-received titanium. This enhanced degree of attachment was accompanied with an increased level of extracellular polymeric substances (EPS) production by the bacteria.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Small-angle neutron scattering (SANS) analysis and transmission electron microscopy evidence suggest the occurrence of nanoscale porosity in commercial-purity titanium processed by equal-channel angular pressing (ECAP). SANS data were produced at two different facilities (GKSS, Germany; and Los Alamos, USA) and were analysed using three different methods. The results are consistent and yield a conclusive picture of the distribution of the scattering centres, which are believed to be associated with nanoporosity. Back pressure applied during ECAP tends to reduce the average pore size, which also depends on the processing route used. The results of the study strongly suggest that ECAP leaves a footprint in titanium in the form of a population of polydispersed nanovoids, which may play an important role in subsequent processing of the material.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hot deformation behavior and microstructure evolution of a coarse grain metastable beta titanium alloy (Ti-5Al-5Mo-5V-3Cr) was investigated using uniaxial compression testing followed by a subsequent beta annealing treatment. Compression testing was carried out at 720 °C and strain rates between 0.001-10 s-1 on samples with beta annealed condition and aged microstructure containing high volume fraction of relatively large alpha precipitates. The peak load of the aged samples are higher than the non-aged specimens but they show rather similar steady state flow stress. The subsequent beta annealing treatment on the compressed aged samples leads to breaking down the ingot microstructure and formation of a fully recrystallized beta phase with massive grain refinement (order of millimeter to ∼100 μm). However, after annealing such grain refinement is not seen for the non-aged samples except at high strain rates that showed partial and local recrystallization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The consumption of titanium dioxide in today's world is on the increase. As the most popular nano substance, TiO 2 is used in various industries notably in the textile industry. More and more recently, through a synergistic combination of photocatalytic features of nanoparticles, fabrics with novel properties are produced. Self-cleaning and stability against UV rays as well as chemical media, to name but a few, are among new prominent properties, obtained on textiles. A common subject reported in most studies has been the diverse approaches to immobilize the nanoparticles on the surface of fabrics. Wool is among common textile materials that have undergone numerous processes to be modified. This review intends to bring to light different aspects of application of nano titanium dioxide in the textile industry especially on wool, and also presents a concise overview on the rigorous pieces of research conducted in this realm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, the antifelting and antibacterial features of wool samples treated with nanoparticles of titanium dioxide (TiO2) were evaluated. To examine the antifelting properties of the treated samples, the fabric shrinkage after washing was determined. The antimicrobial activity was assessed through the calculation of bacterial reduction against Escherichia coli (Gram-negative) and Staphylococcus aureus (Gram-positive) bacteria. TiO 2 was stabilized on the wool fabric surface by means of carboxylic acids, including citric acid (CA) and butane tetracarboxylic acid (BTCA). Both oxidized samples with potassium permanganate and nonoxidized wool fabrics were used in this study. The relations between both the TiO2 and carboxylic acid concentrations in the impregnated bath and the antifelting and antibacterial properties are discussed. With increasing concentration in the impregnated bath, the amount of TiO2 nanoparticles on the surface of the wool increased; subsequently, lower shrinkage and higher antibacterial properties were obtained. The existence of TiO2 nanoparticles on the surface of the treated samples was proven with scanning electron microscopy images and energy-dispersive spectrometry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study an effective nanocomposite antimicrobial agent for wool fabric was introduced. The silver loaded nano TiO(2) as a nanocomposite was prepared through UV irradiation in an ultrasonic bath. The nanocomposite was stabilized on the wool fabric surface by using citric acid as a friendly cross-linking agent. The treated wool fabrics indicated an antimicrobial activity against both Staphylococcus aureus and Escherichia coli bacteria. Increasing the concentration of Ag/TiO(2) nanocomposite led to an improvement in antibacterial activities of the treated fabrics. Also increasing the amount of citric acid improved the adsorption of Ag/TiO(2) on the wool fabric surface leading to enhance antibacterial activity. The EDS spectrum, SEM images, and XRD patterns was studied to confirm the presence of existence of nanocomposite on the fabric surface. The role of both cross-linking agent and nanocomposite concentrations on the results was investigated using response surface methodology (RSM).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wool is a textile material that is valued for its strength, warmth, water resistance, and texture. But this natural fiber of the protein keratin lacks the stain resistance of synthetic fabrics and is also generally susceptible to harsh processing conditions. In this study, raw and oxidized wool fabrics were treated with nano titanium dioxide (TiO2) powder in an ultrasonic bath. These particles were linked to the wool surface by butane tetra carboxylic acid and also sodium hypophosphite was used as a catalyst. The photo-catalytic activity of TiO2 nanoparticles deposited on the wool fabrics was followed by the degradation of Acid Blue 113 as a stain and also determined by the degradation rate of food stains such as coffee, tea, and fruit juice under the ultraviolet rays. The results showed that increasing the amount of nano TiO2 leads to improved degradation of stains on the treated fabric.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photo yellowing of wool is one of the most important problems which have negative impacts on various aspects of wool prompting scientists to find a solution over the past decades. In this research the protective features of nano-titanium dioxide particles against UV on wool fabric were discussed and the color variations of wool samples after UV irradiation were measured and reported. It was shown that nano TiO2 is a suitable UV absorber and its effect depends on the concentration. Also, it was assumed that butane tetracarboxylic acid plays a prominent role as a cross-linking agent to stabilize the nano-titanium dioxide as well as a polyanion to maintain negative charges on the wool surface for higher nano particles absorption. Also the variables conditions were optimized using response surface methodology (RSM).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High fatigue strength is one of the major requirements for dental implant materials. It was previously shown that the fatigue strength under conventional stress-control tension–compression testing can be doubled for commercially pure (CP) titanium processed by equal channel angular pressing. However, the fatigue endurance of an implant exposed to cyclic loading in corrosive media (bodily fluids) may potentially be compromised. In this work, non-conventional bending fatigue testing in air and in simulated body fluid (SBF) has been carried out for coarse-grained and ultrafine-grained CP titanium.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

 Boron nitride nanotube reinforcement at titanium matrix composite increased the strength of the composite both at room and high temperature. At higher sintering temperature, nanotube reacts with titanium first forming TiB2 transition phase at the interface and then in-situ formed TiB phases in the matrix, which is also responsible for enhanced mechanical properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The synthesis of Fe-TiC metal matrix composite during metal deposition with laser and arc welding techniques is of technical and economic interest for hard surfacing of engineering components. Recent studies linked the resistance to abrasive wear with the size and morphology of TiC precipitates, which are strongly dependent on the deposition conditions and, more importantly, on the alloy chemistry. In this study, the effect of silicon and manganese on the TiC precipitates was explored and different processing conditions were assessed. The characterisation included optical and scanning electron microscopy, X-ray diffraction and microhardness testing. The results indicate that silicon and manganese can have a significant effect on TiC size and morphology. Therefore, the composition of the matrix alloy offers an effective pathway to modify the microstructure of in-situ precipitated Fe-TiC metal matrix composites. © 2013 Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Titanium and grey cast iron powders were blended and deposited by plasma transferred arc onto mild steel substrates. The powders were injected directly into the arc by a stream of inert gas. The grey cast iron provided the iron matrix and the excess carbon content for reaction and precipitation of titanium carbides. The microstructure of the overlay was analysed by optical microscopy and scanning electron microscopy, and the respective phases were identified by X-ray diffraction. Microhardness measurements were taken from representative areas and the wear behaviour was assessed under low-stress abrasion conditions. The results show that the addition of titanium produced a significant change in the microstructure of the overlays, increased surface hardness and enhanced wear resistance compared to overlays produced without titanium.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis developed a two-step hydrothermal treatment to modify titanium materials,which is very useful for improving the osteointegration of titanium materials. The cellular responses of SaOS2 cells to seventeen element discs were assessed across the different elements. The cell responses to different elemental metals showed that using appropriate concentrations of these elements are critical for designing good Ti-based biomaterials for implants due to the dose-dependent cytotoxicity of each element.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The research aim is to study and analyze the shear zone by application of merchant circle during machining of titanium alloy (Ti6Al4V). The thermo-mechanical reaction during machining plays an important role in defining machinability of titanium alloys. The scientific community is concerned about machining of titanium alloy due to problems occurring in the shear zone that affect tool life. Studying the cutting action contributes to understanding and addressing these problems effectively. For this purpose, an experimental setup, utilizing a high speed camera will be used to study the shear zone. The shear zone characteristics are studied by analyzing the images captured by a high speed camera placed near to the shear zone during machining. The experimental design consists of conducting a series of turning trials using combination of cutting parameters namely constant spindle speed (n) 770 rpm; feed rate (f) of 2 and 4 mm/rev; and depth of cut (d) of 1 and 2 mm. The length of cut (L) of 10 mm remains constant and no coolant is used for all trials. The images obtained from the camera are analyzed against the theory of orthogonal cutting using merchants circle.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The thermal evolution process of RuO2–Ta2O5/Ti coatings with varying noble metal content has been investigated under in situ conditions by thermogravimetry combined with mass spectrometry. The gel-like films prepared from alcoholic solutions of the precursor salts (RuCl3·3H2O, TaCl5) onto titanium metal support were heated in an atmosphere containing 20% O2 and 80% Ar up to 600 °C. The evolution of the mixed oxide coatings was followed by the mass spectrometric ion intensity curves. The cracking of retained solvent and the combustion of organic surface species formed were also followed by the mass spectrometric curves. The formation of carbonyl- and carboxylate-type surface species connected to the noble metal was identified by Fourier transform infrared emission spectroscopy. These secondary processes–catalyzed by the noble metal–may play an important role in the development of surface morphology and electrochemical properties. The evolution of the two oxide phases does not take place independently, and the effect of the noble metal as a combustion catalyst was proved.