991 resultados para tin dioxide films


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The growth of strongly oriented or epitaxial thin films of metal oxides generally requires relatively high growth temperatures or infusion of energy to the growth surface through means such as ion bombardment. We have grown high quality epitaxial thin films of Co3O4 on different substrates at a temperature as low as 450°C by low-pressure metal-organic chemical vapor deposition (MOCVD) using cobalt(II) acetylacetonate as the precursor. With oxygen as the reactant gas, polycrystalline Co3O4 films are formed on glass and Si(100) in the temperature range 350-550°C. Under similar conditions of growth, highly oriented films of Co3O4 are formed on SrTiO3(100) and LaAlO3(100). The film on LaAlO3(100) grown at 450°C show a rocking curve FWHM of 1.61°, which reduces to 1.32° when it is annealed in oxygen at 725°C. The film on SrTiO3(100) has a FWHM of 0.330 (as deposited) and 0.29° (after annealing at 725°C). The ø-scan analysis shows cube-on-cube epitaxy on both these substrates. The quality of epitaxy on SrTiO3(100) is comparable to the best of the pervoskite-based oxide thin films grown at significantly higher temperatures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To investigate the role of grain boundaries and other growth related microstructure in manganite films, a scanning tunneling microscope is used to simultaneously probe surface topography and local potential distribution under current flow at nanometer level in films of epitaxial thin films of La0.7Ca0.3MnO3 deposited on single crystal SrTiO3 and NdGaO3 substrate by laser ablation. We have studied two types of films strained and strain relaxed. Thin (50nm) films (strained due to lattice mismatch between substrate and the film) show step growth (unit cell steps) and have very smooth surfaces. Relatively thicker films (strain relaxed, thickness 200nm) do not have these step growths and show rather smooth well connected grains. Charge transport in these films is not uniform on the nanometer level and is accompanied by potential jumps at the internal surfaces. In particular scattering from grain boundaries results in large variations in the local potential resulting in fields as high as 104-105V/cm located near the grain boundaries. We discuss the role of local strain and strain inhomogeneties in determining the current transport in these films and their resistance and magnetoresistivity. In this paper we attempt to correlate between bulk electronic properties with microscopic electronic conduction using scanning tunneling microscopy and scanning tunneling potentiometry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thin films of BaZrO3 (BZ) were grown using a pulsed laser deposition technique on platinum coated silicon substrates. Films showed a polycrystalline perovskite structure upon different annealing procedures of in-situ and ex-situ crystallization. The composition analyses were done using Energy dispersive X-ray analysis (EDAX) and Secondary ion mass spectrometry (SIMS). The SIMS analysis revealed that the ZrO2 formation at the right interface of substrate and the film leads the degradation of the device on the electrical properties in the case of ex-situ crystallized films. But the in-situ films exhibited no interfacial formation. The dielectric properties have been studied for the different temperatures in the frequency regime of 40 Hz to 100kHz. The response of the film to external ac stimuli was studied at different temperatures, and it showed that ac conductivity values in the limiting case are correspond to oxygen vacancy motion. The electrical modulus is fitted to a stretched exponential function and the results clearly indicate the presence of the non-Debye type of dielectric relaxation in these materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dielectric response of BaBi2Nb2O9 (BBN) thin films has been studied as a function of frequency over a wide range of temperatures. Both dielectric constant and loss tangent of BBN thin films showed a ‘power law’ dependence with frequency, which was analyzed using the Jonscher's universal dielectric response model. Theoretical fits were utilized to compare the experimental results and also to estimate the value of temperature dependence parameters such as n(T) and a(T) used in the Jonscher's model. The room temperature dielectric constant (ε') of the BBN thin films was 214 with a loss tangent (tanδ) of 0.04 at a frequency of 100 kHz. The films exhibited the second order dielectric phase transition from ferroelectric to paraelectric state at a temperature of 220 °C. The nature of phase transition was confirmed from the temperature dependence of dielectric constant and sponteneous polarization,respectively. The calculated Currie constant for BBN thin films was 4 × 105°C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A study was done on pulsed laser deposited relaxor ferroelectric thin films of 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 (PMN-PT) deposited on platinized silicon substrates with template layers to observe the influence of the template layers on physical and electrical properties. Initial results, showed that perovskite phase (80% by volume) was obtained through proper selection of the processing conditions on Pt/Ti/SiO2/Si substrates. The films were grown at 300°C and then annealed in a rapid thermal annealing furnace in the temperature range of 750-850°C to induce crystallization. Comparison of the films annealed at different temperatures revealed a change in crystallinity, perovskite phase formation and grain size. These results were further used to improve the quality of the perovskite PMN-PT phase by inserting thin layers of TiO2 on the Pt substrate. These resulted in an increase in perovskite phase in the films even at lower annealing temperatures. Dielectric studies on the PMN-PT films show very high values of dielectric constant (1300) at room temperature, which further improved with the insertion of the template seed layer. The relaxor properties of the PMN-PT were correlated with Vogel-Fulcher theory to determine the actual nature of the relaxation process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thin films of Bi2VO5.5 (BVO), a vanadium analog of the n = I member of the Aurivillius family, have been prepared by pulsed laser deposition. The BVO films grow along the [001] direction on LaNiO3(LNO) and YBa2Cu3O7 (YBCO) electrode buffer layers on LaA- IO3(LAO) substrates as obtained from X-ray diffraction studies. The microstructure of the films and of the interfaces within the film and between the film and the substrate were characterized using transmission electron microscopy. The in-plane epitaxial relationship of the rhombohedral LNO on perovskite LAO was [100] LNO // [100] LAO and [001] LNO // [001] LAO. High resolution lattice images showed a sharp interface between LNO and LAO. However, the LNO film is twinned with a preferred orientation along the growth direction. The BVO layer is single crystalline on both LNO/LAO and YBCO/LAO with the caxis parallel to the growth direction except for a thin layer of about 400 Å at the interface which is polycrystalline.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The constitutive behavior of passivated copper films is studied. Stresses in copper films of thickness ranging from 1000 nm to 40 nm, passivated with silicon oxide on a quartz or silicon substrate, were measured using the curvature method. The thermal cycling spans a temperature range from - 196 to 600°C. It is seen that the strong relaxation at high temperatures normally found in unpassivated films is nonexistent for passivated films. The copper film did not show any rate-dependent effect over a range of heating/cooling rate from 5 to 25°C/min. Further analyses showed that significant strain hardening exists during the course of thermal loading. In particular, the measured stress- temperature response can only be fitted with a kinematic hardening model, if a simple constitutive law within the continuum plasticity framework is to be used. The analytic procedures for extracting the film properties are presented. Implications to stress modeling of copper interconnects in actual devices are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thin films of ferroelectric ABi2Ta2O9 bismuth-layered structure, where A = Ba, Sr and Ca, were prepared by pulsed laser deposition technique on Pt/TiO2/SiO2/Si(100) substrates. The influence of substrate temperature between 500 to 750°C, and oxygen partial pressure 100-300 mTorr, on the structural and electrical properties of the films was investigated. The films deposited above 650°C substrate temperature showed complete Aurivillius layered structure. Films annealed at 750°C for 1h in oxygen atmosphere have exhibited better electrical properties. Atomic force microscopy study of surface topography shows that the films grown at lower temperature has smaller grains and higher surface roughness. This paper discusses the pronounced influence of A-site cation substitution on the structural and ferroelectric properties with the aid of Raman spectroscopy, X-ray diffraction and electrical properties. The degradation of ferroelectric properties with Ba and Ca substitution at A-sites is attributed to the higher structural distortion caused by changing tolerance factor. A systematic proportionate variation of coercive field is attributed to electronegativity difference of A-site cations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report crack formation in alumina films grown on Si(100), caused by annealing in a controlled oxidizing ambient. The films were grown in a low-pressure CVD reactor, using aluminium acetylacetonate as precursor. High purity argon and nitrous oxide were employed as carrier and oxidizing gas, respectively. The films were characterized by optical microscopy and SEM/EDAX. The proportion and chemical nature of the heteroatoms, namely C and H, incorporated into the films from the precursor, were characterized by XPS, and FTIR. As-deposited films do not exhibit any cracks, while post-deposition annealing results in cracks. Apart from the delamination of the films, annealing in nitrous oxide ambient leads to an unusual crack geometry, which we term the “railway-track”. These twin cracks are very straight and run parallel to each other for as much as several millimeters. Often, two such linear tracks meet at exactly 90°. Between some of these tracks lie bullet-like structures with very sharp tips, oriented in a specific direction. As cracks are generally activated by residual stress, both thermal and intrinsic, the origins of the stresses that generate these linear cracks are discussed. The redistribution of stress, arising from the removal of C and H during annealing, will also be discussed. An attempt has been made to correlate the formation of cracks with the crystal structure of the film.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Structural, optical and nanomechanical properties of nanocrystalline Zinc Telluride (ZnTe) films of thickness upto 10 microns deposited at room temperature on borosilicate glass substrates are reported. X-ray diffraction patterns reveal that the films were preferentially oriented along the (1 1 1) direction. The maximum refractive index of the films was 2.74 at a wavelength of 2000 nm. The optical band gap showed strong thickness dependence. The average film hardness and Young's modulus obtained from load-displacement curves and analyzed by Oliver-Pharr method were 4 and 70 GPa respectively. Hardness of (1 1 1) oriented ZnTe thin films exhibited almost 5 times higher value than bulk. The studies show clearly that the hardness increases with decreasing indentation size, for indents between 30 and 300 nm in depth indicating the existence of indentation size effect. The coefficient of friction for these films as obtained from the nanoscratch test was ~0.4.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Structural, optical and nanomechanical properties of nanocrystalline Zinc Telluride (ZnTe) films of thickness upto 10 microns deposited at room temperature on borosilicate glass substrates are reported. X-ray diffraction patterns reveal that the films were preferentially oriented along the (1 1 1) direction. The maximum refractive index of the films was 2.74 at a wavelength of 2000 nm. The optical band gap showed strong thickness dependence. The average film hardness and Young's modulus obtained from load-displacement curves and analyzed by Oliver-Pharr method were 4 and 70 GPa respectively. Hardness of (1 1 1) oriented ZnTe thin films exhibited almost 5 times higher value than bulk. The studies show clearly that the hardness increases with decreasing indentation size, for indents between 30 and 300 nm in depth indicating the existence of indentation size effect. The coefficient of friction for these films as obtained from the nanoscratch test was ~0.4.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As deposited amorphous and crystallized thin films of Ti 37.5% Si alloy deposited by pulsed laser ablation technique were irradiated with 100 keV Xe+ ion beam to an ion fluence of about 1016 ions-cm−2. Transmission electron microscopy revealed that the implanted Xe formed amorphous nanosized clusters in both cases. The Xe ion-irradiation favors nucleation of a fcc-Ti(Si) phase in amorphous films. However, in crystalline films, irradiation leads to dissolution of the Ti5Si3 intermetallic phase. In both cases, Xe irradiation leads to the evolution of similar microstructures. Our results point to the pivotal role of nucleation in the evolution of the microstructure under the condition of ion implantation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have prepared epitaxial thin films of Yy‐Pr1‐y‐Ba‐Cu‐O (y= 1 to 0) and superlattices of Y‐Ba‐Cu‐O/Yy‐Pr1‐y ‐Ba‐Cu‐O using pulsed laser deposition technique. The zero resistance transition temperatures of Yy‐Pr1‐y‐Ba‐Cu‐O bulk samples are reproduced in the films. The composition oscillations in the superlattices are observed by SIMS. The films and superlattices are found to have c‐axis orientations and good crystallinity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the synthesis of thin films of B–C–N and C–N deposited by N+ ion-beam-assisted pulsed laser deposition (IBPLD) technique on glass substrates at different temperatures. We compare these films with the thin films of boron carbide synthesized by pulsed laser deposition without the assistance of ion-beam. Electron diffraction experiments in the transmission electron microscope shows that the vapor quenched regions of all films deposited at room temperature are amorphous. In addition, shown for the first time is the evidence of laser melting and subsequent rapid solidification of B4C melt in the form of micrometer- and submicrometer-size round particulates on the respective films. It is possible to amorphize B4C melt droplets of submicrometer sizes. Solidification morphologies of micrometer-size droplets show dispersion of nanocrystallites of B4C in amorphous matrix within the droplets. We were unable to synthesize cubic carbon nitride using the current technique. However, the formation of nanocrystalline turbostratic carbo- and boron carbo-nitrides were possible by IBPLD on substrate at elevated temperature and not at room temperature. Turbostraticity relaxes the lattice spacings locally in the nanometric hexagonal graphite in C–N film deposited at 600 °C leading to large broadening of diffraction rings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanocrystalline tin oxide powder was prepared using a solution precipitation technique after adding the surfactant sodium bis (2-ethylhexyl) sulfosuccinate (AOT). Powders were characterized using X-ray diffraction (XRD), surface area (BET) and transmission electron microscopy (TEM). The gas sensitivity for surfactant added powders increased for liquid petroleum gas (LPG) as well as compressed natural gas (CNG), due to the decreased particle size and the increased surface area. The LPG gas sensitivity increased several times using phosphorus treated surfactant AOT.