950 resultados para time-dependent potential barrier


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper particular investigation is directed towards the combined effects of horizontal and vertical motions of real earthquakes to structures resting on sliding base. A simplified method is presented to treat the nonlinear effects of time dependent frictional force of the sliding base as a function of the vertical reaction produced by the foundation. As an example, the El Centro 1940 earthquake record is used on a structural model to show the structural responses due to a sliding base with different frictional and stiffness characteristics. The study shows that vertical ground motion does affect both the superstructure response and the base sliding displacement. Nevertheless, the sliding base isolator is shown to be effective for the reduction of seismic response of a superstructure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper deals with in detail the permanence of the spiral structure of galaxies andthe characters of waser mechanism. A simplified model of galaxy is adopted. Variousdynamical characters of density waves are studied using numerical calculation method. Theresults verify very well the switch character f waser and the tunnel effect of density wavesat the potential barrier of corotation circle as is shown in a previous work of the author.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Rayleigh-Marangoni-Benard convective instability (R-M-B instability) and flow patterns in the two-layer system of silicon oil 10cSt and Fluorinert FC70 liquids are studied theoretically and experimentally. Both linear instability analysis and 2D numerical simulation (A=L/H=10) were performed to study the influence of thermocapillary force on the convective instability of the two-layer system. Time-dependent oscillations arising at the onset of convection were investigated in a larger various range of two-layer depth ratios (Hr=H1/H2) from 0.2 to 5.0 for different total depth less than 12mm. Our results are different from the previous study on the Rayleig-B閚ard instability and show the strong effects of thermocapillary force at the interface on the time-dependent oscillations at the onset of instability convection. Primary experimental results of the critical instability parameters and the convective structure in the R-M-B convection have been obtained by using the digital particle image velocimetry (DPIV) system, and a good agreement in comparison with the results of numerical simulation was obtained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Rayleigh-Marangoni-Benard convective instability (R-M-B instability) in the two-layer systems such as Silicone oil (10cSt)/Fluorinert (FC70) and Silicone oil (2cSt)/water liquids are studied. Both linear instability analysis and nonlinear instability analysis (2D numerical simulation) were performed to study the influence of thermocapillary force on the convective instability of the two-layer system. The results show the strong effects of thermocapillary force at the interface on the time-dependent oscillations at the onset of instability convection. The secondary instability phenomenon found in the real two-layer system of Silicone oil over water could explain the difference in the comparison of the Degen's experimental observation with the previous linear stability analysis results of Renardy et al.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The microgravity research, as a branch of the advanced sciences and a spe- cialized field of high technology, has been made in China since the late 1980's. The research group investigating microgravity fluid physics consisted of our col- leagues and the authors in the Institute of Mechanics of the Chinese Academy of Sciences (CAS), and we pay special attention to the floating zone convection as our first research priority. Now, the research group has expanded and is a part of the National Microgravity Laboratory of the CAS, and the research fields have been extended to include more subjects related to microgravity science. Howev- er, the floating zone convection is still an important topic that greatly holds our research interests.

目录

1. models of floating zone convection
1.1 floating-zone crystal growth
1.2 physical model
1.3 hydrodynamic model
1.4 mathematical model
references
2. basic features of floating zone convection
2.1 equations and boundary conditions
2.2 simple solutions of fz convection
2.3 solution for two-layers flow
2.4 numerical simulation
2.5 onset of oscillation
references
3. experimental method of fz convection
3.1 ground-based simulation experiments for pr≥1
3.2 temperature and velocity oscillations
3.3 optical diagnostics of free surface oscillation
3.4 critical parameters
3.5 microgravity experiments
3.6 ground-based simulation experiment for pr《1
.references
4. mechanism on the onset of oscillatory convection
4.1 order of magnitude analysis
4.2 mechanism of hydrothermal instability
4.3 linear stability analysis
4.4 energy instability of thermocapillary convection
4.5 unsteady numerical simulation of 2d and 3d
4.6 two bifurcation transitions in the case of small pr number fluid
4.7 two bifurcation transitions in the case of large pr number fluid
4.8 transition to turbulence
references
5. liquid bridge volume as a critical geometrical parameter
5.1 critical geometrical parameters
5.2 ground-based and mierogravity experiments
5.3 instability analyses of a large prandtl number (pr≥1)fluid
5.4 instability analyses of a small prandtl number (pr《1)fluid
5.5 numerical simulation on two bifurcation process
references
6. theoretical model of crystal growth by the floating zone method
6.1 concentration distribution in a pure diffusion process
6.2 solutal capillary convection and diffusion
6.3 coupling with phase change convection
6.4 engineering model of floating zone technique
references
7. influence of applied magnetic field on the fz convection
7.1 striation due to the time-dependent convection
7.2 applied steady magnetic field and rotational magnetic field
7.3 magnetic field design for floating half zone
7.4 influence of magnetic field on segregation
references
8. influence of residual acceleration and g-jitter
8.1 residual acceleration in microgravity experiments
8.2 order of magnitude analyses (oma)
8.3 rayleigh instability due to residual acceleration
8.4 ground-based experiment affected by a vibration field
8.5 numerical simulation of a low frequency g-jitter
8.6 numerical simulation of a high frequency g-jitter
references

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We show that a category of one-dimensional XY-type models may enable high-fidelity quantum state transmissions, regardless of details of coupling configurations. This observation leads to a fault-tolerant design of a state transmission setup. The setup is fault-tolerant, with specified thresholds, against engineering failures of coupling configurations, fabrication imperfections or defects, and even time-dependent noises. We propose an experimental implementation of the fault-tolerant scheme using hard-core bosons in one-dimensional optical lattices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

利用三维有限元方法对三峡升船机塔柱结构的动力学特性及随机地震响应进行了计算分析,结果表明塔柱结构柔度较大,其项部节点随机地震位移响应为中宽带过程.在此基础上,采用首次超越破坏机制,以塔柱结构顶部典型位置的位移限值为可靠度界限,对设计地震烈度下升船机塔柱结构的时变动力可靠度进行了计算分析,得到了塔柱结构设计基准期内的时变动力可靠度,并讨论了可靠度界限值的随机性对结构抗震时变可靠度计算结果的影响,建议升船机结构抗震可靠度计算模型采用Markov过程假定.该文可为升船机结构设计及安全运行提供必要的参考.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The first thesis topic is a perturbation method for resonantly coupled nonlinear oscillators. By successive near-identity transformations of the original equations, one obtains new equations with simple structure that describe the long time evolution of the motion. This technique is related to two-timing in that secular terms are suppressed in the transformation equations. The method has some important advantages. Appropriate time scalings are generated naturally by the method, and don't need to be guessed as in two-timing. Furthermore, by continuing the procedure to higher order, one extends (formally) the time scale of valid approximation. Examples illustrate these claims. Using this method, we investigate resonance in conservative, non-conservative and time dependent problems. Each example is chosen to highlight a certain aspect of the method.

The second thesis topic concerns the coupling of nonlinear chemical oscillators. The first problem is the propagation of chemical waves of an oscillating reaction in a diffusive medium. Using two-timing, we derive a nonlinear equation that determines how spatial variations in the phase of the oscillations evolves in time. This result is the key to understanding the propagation of chemical waves. In particular, we use it to account for certain experimental observations on the Belusov-Zhabotinskii reaction.

Next, we analyse the interaction between a pair of coupled chemical oscillators. This time, we derive an equation for the phase shift, which measures how much the oscillators are out of phase. This result is the key to understanding M. Marek's and I. Stuchl's results on coupled reactor systems. In particular, our model accounts for synchronization and its bifurcation into rhythm splitting.

Finally, we analyse large systems of coupled chemical oscillators. Using a continuum approximation, we demonstrate mechanisms that cause auto-synchronization in such systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study we investigate the existence, uniqueness and asymptotic stability of solutions of a class of nonlinear integral equations which are representations for some time dependent non- linear partial differential equations. Sufficient conditions are established which allow one to infer the stability of the nonlinear equations from the stability of the linearized equations. Improved estimates of the domain of stability are obtained using a Liapunov Functional approach. These results are applied to some nonlinear partial differential equations governing the behavior of nonlinear continuous dynamical systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An arc-heated thruster of 130–800 W input power is tested in a vacuum chamber at pressures lower than 20 Pa with argon or H2–N2 gas mixture as propellant. The time-dependent arc voltage-current curve, outside-surface temperature of the anode nozzle and the produced thrust of the firing arcjet thruster are measured in situ simultaneously, in order to analyze and evaluate the dependence of thruster working characteristics and output properties, such as specific impulse and thrust efficiency, on nozzle temperature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This dissertation consists of three parts. In Part I, it is shown that looping trajectories cannot exist in finite amplitude stationary hydromagnetic waves propagating across a magnetic field in a quasi-neutral cold collision-free plasma. In Part II, time-dependent solutions in series expansion are presented for the magnetic piston problem, which describes waves propagating into a quasi-neutral cold collision-free plasma, ensuing from magnetic disturbances on the boundary of the plasma. The expansion is equivalent to Picard's successive approximations. It is then shown that orbit crossings of plasma particles occur on the boundary for strong disturbances and inside the plasma for weak disturbances. In Part III, the existence of periodic waves propagating at an arbitrary angle to the magnetic field in a plasma is demonstrated by Stokes expansions in amplitude. Then stability analysis is made for such periodic waves with respect to side-band frequency disturbances. It is shown that waves of slow mode are unstable whereas waves of fast mode are stable if the frequency is below the cutoff frequency. The cutoff frequency depends on the propagation angle. For longitudinal propagation the cutoff frequency is equal to one-fourth of the electron's gyrofrequency. For transverse propagation the cutoff frequency is so high that waves of all frequencies are stable.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

数值求解了一维含时的Schroedinger方程,研究了μ子催化核聚变反应中激光强度和波长对介原子μ^3He电离的影响.发现当激光强度为10^19-10^23W/cm^2量级时,介原子μ^3He有2.7%左右的电离率;当激光强度达到6.0×10^24W/cm^2时,对介原子μ^3He有显著的电离,并且电离率随着激光的强度、波长而递增,进而会有效提高μ子的催化效率.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

利用强激光场电离和离解分子来研究分子激发态的波包结构是强场物理的重要研究方向。利用短时指数传播子对称分割法和快速傅里叶变换技术。数值求解了一维含时Schr(oe)dinger方程,探讨了双色激光场中激光的基波和谐波强度之间的不同配比以及脉宽对线性多原子分子离子电离的影响。理论计算结果表明:基波和谐波的相对相位为π时,尽管随着激光的基波和谐波强度之间配比的变化,电离几率随原子间距变化的趋势基本保持不变,但在一定的激光基波强度下(1.2×10^13~1.2×10^15W/cm^2),激光基波强度的变化可以明显

Relevância:

100.00% 100.00%

Publicador:

Resumo:

当红外强激光和极紫外(XUV)阿秒脉冲共同作用于原子分子时,电离出去的电子通常会吸收和辐射激光光子而发生能量扩展.讨论了由于XUV阿秒脉冲的短波长与扩展后的电子波包尺度可相比拟时在高次谐波产生过程中引起的非偶极效应.采用彤作为模型分子,并把分子轴置于激光场的传播方向,通过解二维含时薛定谔方程并比较考虑非偶极效应和采用偶极近似两种方法计算得到的结果,两者相比,前者的谐波强度降低,谐波频率向低级次稍有移动,电子能谱的能带内出现了更多的光电子峰.在相同的光电子能量处,两种方法计算得到的信号强度相差2—5倍.并且

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis presents a new approach for the numerical solution of three-dimensional problems in elastodynamics. The new methodology, which is based on a recently introduced Fourier continuation (FC) algorithm for the solution of Partial Differential Equations on the basis of accurate Fourier expansions of possibly non-periodic functions, enables fast, high-order solutions of the time-dependent elastic wave equation in a nearly dispersionless manner, and it requires use of CFL constraints that scale only linearly with spatial discretizations. A new FC operator is introduced to treat Neumann and traction boundary conditions, and a block-decomposed (sub-patch) overset strategy is presented for implementation of general, complex geometries in distributed-memory parallel computing environments. Our treatment of the elastic wave equation, which is formulated as a complex system of variable-coefficient PDEs that includes possibly heterogeneous and spatially varying material constants, represents the first fully-realized three-dimensional extension of FC-based solvers to date. Challenges for three-dimensional elastodynamics simulations such as treatment of corners and edges in three-dimensional geometries, the existence of variable coefficients arising from physical configurations and/or use of curvilinear coordinate systems and treatment of boundary conditions, are all addressed. The broad applicability of our new FC elasticity solver is demonstrated through application to realistic problems concerning seismic wave motion on three-dimensional topographies as well as applications to non-destructive evaluation where, for the first time, we present three-dimensional simulations for comparison to experimental studies of guided-wave scattering by through-thickness holes in thin plates.