985 resultados para thin film transistors


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Superconducting Fault Current Limiters (SFCLs) are able to reduce fault currents to an acceptable value, reducing potential mechanical and thermal damage to power system apparatus and allowing more flexibility in power system design and operation. The device can also help avoid replacing circuit breakers whose capacity has been exceeded. Due to limitations in current YBCO thin film manufacturing processes, it is not easy to obtain one large thin film that satisfies the specifications for high voltage and large current applications. The combination of standardized thin films has merit to reduce costs and maintain device quality, and it is necessary to connect these thin films in different series and parallel configurations in order to meet these specifications. In this paper, the design of a resistive type SFCL using parallel-connected YBCO thin films is discussed, including the role of a parallel resistor and the influence of individual thin film characteristics, based on both theory and experimental results. © 2009 IEEE.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Superconducting Fault Current Limiters (SFCLs) are able to reduce fault currents to an acceptable value, reducing potential mechanical and thermal damage and allowing more flexibility in an electric power system's design. Due to limitations in current YBCO thin film manufacturing techniques, it is necessary to connect a number of thin films in different series and parallel configurations in order to realise a practical SFCL for electric power system applications. The amount of resistance generated (i.e. the degree of current limitation), the characteristics of the S-N transition, and the time at which they operate is different depending on their comparative characteristics. However, it is desirable for series-connected thin films to have an operating time difference as small as possible to avoid placing an excess burden on certain thin films. The role of a parallel resistance, along with the influence of thin film characteristics, such as critical current (Ic), are discussed in regards to the design of SFCLs using YBCO thin films. © 2008 IOP Publishing Ltd.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The unique response of ferroic materials to external excitations facilitates them for diverse technologies, such as nonvolatile memory devices. The primary driving force behind this response is encoded in domain switching. In bulk ferroics, domains switch in a two-step process: nucleation and growth. For ferroelectrics, this can be explained by the Kolmogorov-Avrami-Ishibashi (KAI) model. Nevertheless, it is unclear whether domains remain correlated in finite geometries, as required by the KAI model. Moreover, although ferroelastic domains exist in many ferroelectrics, experimental limitations have hindered the study of their switching mechanisms. This uncertainty limits our understanding of domain switching and controllability, preventing thin-film and polycrystalline ferroelectrics from reaching their full technological potential. Here we used piezoresponse force microscopy to study the switching mechanisms of ferroelectric-ferroelastic domains in thin polycrystalline Pb 0.7Zr0.3TiO3 films at the nanometer scale. We have found that switched biferroic domains can nucleate at multiple sites with a coherence length that may span several grains, and that nucleators merge to form mesoscale domains, in a manner consistent with that expected from the KAI model. © 2012 American Physical Society.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

As a means of characterizing the diffusion parameters of fiber reinforced polymer (FRP) composites within a relatively short time frame, the potential use of short term tests on epoxy films to predict the long-term behavior is investigated. Reference is made to the literature to assess the effectiveness of Fickian and anomalous diffusion models to describe solution uptake in epoxies. The influence of differing exposure conditions on the diffusion in epoxies, in particular the effect of solution type and temperature, are explored. Experimental results, where the solution uptake in desiccated (D) or undesiccated (U) thin films of a commercially available epoxy matrix subjected to water (W), salt water (SW), or alkali concrete pore solution (CPS) at either 20 or 60°C, are also presented. It was found that the type of solution did not significantly influence the diffusion behavior at 20°C and that the mass uptake profile was anomalous. Exposure to 60°C accelerated the initial diffusion behavior and appeared to raise the level of saturation. In spite of the accelerated approach, conclusive values of uptake at saturation remained elusive even at an exposure period of 5 years. This finding questions the viability of using short-term thin film results to predict the long-term mechanical performance of FRP materials. © 2013 Wiley Periodicals, Inc.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Label-free detection of cancer biomarkers using low cost biosensors has promising applications in clinical diagnostics. In this work, ZnO-based thin film bulk acoustic wave resonators (FBARs) with resonant frequency of ∼1.5 GHz and mass sensitivity of 0.015 mg/m2 (1.5 ng/cm2) have been fabricated for their deployment as biosensors. Mouse monoclonal antibody, anti-human prostate-specific antigen (Anti-hPSA) has been used to bind human prostate-specific antigen (hPSA), a model cancer used in this study. Ellipsometry was used to characterize and optimise the antibody adsorption and antigen binding on gold surface. It was found that the best amount of antibody at the gold surface for effective antigen binding is around 1 mg/m2, above or below which resulted in the reduced antigen binding due to either the limited binding sites (below 1 mg/m2) or increased steric effect (above 1 mg/m2). The FBAR data were in good agreement with the data obtained from ellipsometry. Antigen binding experiments using FBAR sensors demonstrated that FBARs have the capability to precisely detect antigen binding, thereby making FBARs an attractive low cost alternative to existing cancer diagnostic sensors. © 2013 Elsevier B.V.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Significant reduction of the bulk resistivity in a ferroelectric Pb(Zr 0.45Ti0.55)O3 thin film is observed before the remnant polarization started to decrease noticeably at the onset of its fatigue switching process. It is associated with the increase of charge carriers within the central bulk region of the film. The decrease of bulk resistivity would result in the increase of Joule heating effect, improving the temperature of the thin film, which is evaluated by the heat conduction analysis. The Joule heating effect in turn accelerates the polarization reduction, i.e. fatigue. Enhancing the heat dissipation of a ferroelectric capacitor is shown to be able to improve the device's fatigue endurance effectively. © 2013 Chinese Physical Society and IOP Publishing Ltd.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We report the fabrication of a mechanically-flexible 16×16 array of thin-film, micron-size LEDs emitting at 480 nm. Devices were transfer-printed onto a mechanically-flexible ITO backplane using a modified, high-precision (placement accuracy ±25 nm) assembly system. © 2013 IEEE.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Ferroelectric thin films have been intensively studied at the nanometre scale due to the application in many fields, such as non-volatile memories. Enhanced piezo-response force microscopy (E-PFM) was used to investigate the evolution of ferroelectric and ferroelastic nanodomains in a polycrystalline thin film of the simple multi-ferroic PbZr0.3Ti0.7O 3 (PZT). By applying a d.c. voltage between the atomic force microscopy (AFM) tip and the bottom substrate of the sample, we created an electric field to switch the domain orientation. Reversible switching of both ferroelectric and ferroelastic domains towards particular directions with predominantly (111) domain orientations are observed. We also showed that along with the ferroelectric/ferroelastic domain switch, there are defects that also switch. Finally, we proposed the possible explanation of this controllable defect in terms of flexoelectricity and defect pinning. © 2013 IEEE.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A flat, fully strain-relaxed Si0.72Ge0.28 thin film was grown on Si (1 0 0) substrate with a combination of thin low-temperature (LT) Ge and LT-Si0.72Ge0.28 buffer layers by ultrahigh vacuum chemical vapor deposition. The strain relaxation ratio in the Si0.72Ge0.28 film was enhanced up to 99% with the assistance of three-dimensional Ge islands and point defects introduced in the layers, which furthermore facilitated an ultra-low threading dislocation density of 5 x 10(4) cm (2) for the top SiGe film. More interestingly, no cross-hatch pattern was observed on the SiGe surface and the surface root-mean-square roughness was less than 2 nm. The temperature for the growth of LT-Ge layer was optimized to be 300 degrees C. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Vanadium dioxide thin films were fabricated by ion beam sputtering on Si3N4/SiO2/Si after a post reductive annealing process in a nitrogen atmosphere. X-ray Diffraction (XRD), scanning electron microscope (SEM), and X-ray photoelectron spectroscopy (XPS) were employed to analyze the effects of post annealing temperature on crystallinity, morphology, and composition of the vanadium oxide thin films. Transmission properties of vanadium dioxide thin films were measured by Fourier transform-infrared (FT-IR) spectroscopy. The results showed that the as-deposited vanadium oxide thin films were composed of non-crystalline V2O5 and a tetragonal rutile VO2. After annealing at 400 degrees C for 2 h, the mixed phase vanadium oxide (VOx) thin film changed its composition and structure to VO2 and had a (011) oriented monoclinic rutile structure. When increasing the temperature to 450 degrees C, nano VO2 thin films with smaller grains were obtained. FT-IR results showed that the transmission contrast factor of the nano VO2 thin film was more than 0.99 and the transmission of smaller grain nano VO2 thin film was near zero at its switched state. Nano VO2 thin film with smaller grains is an ideal material for application in optical switching devices.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The mechanical properties and fracture behavior of silicon nitride (SiNx) thin film fabricated by plasma-enhanced chemical vapor deposition is reported. Plane-strain moduli, prestresses, and fracture strengths of silicon nitride thin film; deposited both oil a bare Si substrate and oil a thermally oxidized Si substrate were extracted using bulge testing combined with a refined load-deflection model of long rectangular membranes. The plane-strain modu i and prestresses of SiNx thin films have little dependence on the substrates, that is, for the bare Si substrate, they are 133 +/- 19 GPa and 178 +/- 22 MPa, respectively, while for the thermally oxidized substrate, they are 140 +/- 26 Gila and 194 +/- 34 MPa, respectively. However, the fracture strength values of SiNx films grown on the two substrates are quite different, i.e., 1.53 +/- 0.33 Gila and 3.08 +/- 0.79 GPa for the bare Si substrate a A the oxidized Si substrate, respectively. The reference stresses were computed by integrating the local stress of the membrane at the fracture over the edge, Surface, and volume of the specimens and fitted with the Weibull distribution function. For SiNx thin film produced oil the bare Si Substrate, the Volume integration gave a significantly better agreement between data and model, implying that the volume flaws re the dominant fracture origin. For SiNx thin film grown on the oxidized Si substrate, the fit quality of surface and edge integration was significantly better than the Volume integration, and the dominant surface and edge flaws could be caused by buffered HF attacking the SiNx layer during SiO2 removal. Crown Copyright (C) 2008 Published by Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A stoichiometric Gd2O3-x thin film has been grown on a silicon (10 0) substrate with a low-energy dual ion-beam epitaxial technique. Gd2O3-x shares Gd2O3 structures although there are many oxygen deficiencies in the film. The photoluminescence (PL) measurements have been performed in a temperature range 5-300 K. The detailed characters of the peak position, the full-width at half-maximum (FWHM) and the peak intensity at different temperature were reported. An anomalous intensity behavior of the PL spectra has been observed, which is similar to that of some other materials such as porous silicon and silicon nanocrystals in silicon dioxide. Therefore, we suggest that the nanoclusters with the oxygen deficiencies contribute to the PL emission and employ the model of singlet-triplet exchange splitting of exciton to discuss the four peaks observed in the experiment. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Raman spectroscopy technique has been performed to investigate the stress induced in as-grown silicon-on-sapphire (SOS), solid-phase-epitaxy (SPE) re-grown SOS, and Si/gamma-Al2O3/Si double-heteroepitaxial thin films. It was demonstrated that the residual stress in SOS film, arising from mismatch and difference of thermal expansion coefficient between silicon and sapphire, was reduced efficiently by SPE process, and that the stress in Si/gamma-Al2O3/Si thin film is much smaller than that of as-grown SOS and SPE upgraded SOS films. The stress decrease for double heteroepitaxial film Si/gamma-Al2O3/Si mainly arises from the smaller lattice mismatching of 2.4% between silicon top layer and the gamma-Al2O3/Si epitaxiial composite substrate, comparing with the large lattice mismatch of 13% for SOS films. It indicated that gamma-Al2O3/Si as a silicon-based epitaxial substrate benefits for reducing the residual stress for further growth of silicon layer, compared with on bulk sapphire substrate. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A series of hydrogenated amorphous silicon carbide (a-Si1-xCx:H) films were prepared by plasma-enhanced chemical vapour deposition (PECVD) using a gas mixture of silane, methane, and hydrogen as the reactive source. The previous results show that a high excitation frequency, together with a high hydrogen dilution ratio of the reactive gases, allow an easier incorporation of the carbon atoms into the silicon-rich a-Si1-xCx:H film, widen the valence controllability. The data show that films with optical gaps ranging from about 1.9 to 3.6 eV could be produced. In this work the influence of the hydrogen dilution ratio of the reactive gases on the a-Si1-xCx:H film properties was investigated. The microstuctural and photoelectronic properties of the silicon carbide films were characterized by Rutherford backscattering spectrometry (RBS), elastic recoil detection analysis (ERDA), and FT-IR spectrometry. The results show that a higher hydrogen dilution ratio enhances the incorporation of silicon atoms in the amorphous carbon matrix for carbon-rich a-Si1-xCx:H films. One pin structure was prepared by using the a-Si1-xCx:H film as the intrinsic layer. The light spectral response shows that this structure fits the requirement for the top junction of colour sensor. (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The microstructures of hydrogenated microcrystalline silicon (tic-Si: H) thin films, prepared by plasma-enhanced chemical vapor deposition (PECVD), hot wire CVD(HWCVD) and plasma assisted HWCVD (PE-HWCVD), have been analyzed by the small angle x-ray scattering(SAXS) measurement. The SAXS data show that the microstructures of the μ c-Si: H films display different characteristics for different deposition techniques. For films deposited by PECVD, the volume fraction of micro-voids and mean size are smaller than those in HWCVD sample. Aided by suitable ion-bombardment, PE-HWCVD samples show a more compact structure than the HWCVD sample. The microstructure parameters of the μ c-Si: H thin films deposited by two-steps HWCVD and PE-HWCVD with Ar ions are evidently improved. The result of 45° tilting SAXS measurement indicates that the distribution of micro-voids in the film is anisotropic. The Fouriertransform infrared spectra confirm the SAXS data.