915 resultados para textile industry
Resumo:
This study is about the challenges of learning in the creation and implementation of new sustainable technologies. The system of biogas production in the Programme of Sustainable Swine Production (3S Programme) conducted by the Sadia food processing company in Santa Catarina State, Brazil, is used as a case example for exploring the challenges, possibilities and obstacles of learning in the use of biogas production as a way to increase the environmental sustainability of swine production. The aim is to contribute to the discussion about the possibilities of developing systems of biogas production for sustainability (BPfS). In the study I develop hypotheses concerning the central challenges and possibilities for developing systems of BPfS in three phases. First, I construct a model of the network of activities involved in the BP for sustainability in the case study. Next, I construct a) an idealised model of the historically evolved concepts of BPfS through an analysis of the development of forms of BP and b) a hypothesis of the current central contradictions within and between the activity systems involved in BP for sustainability in the case study. This hypothesis is further developed through two actual empirical analyses: an analysis of the actors senses in taking part in the system, and an analysis of the disturbance processes in the implementation and operation of the BP system in the 3S Programme. The historical analysis shows that BP for sustainability in the 3S Programme emerged as a feasible solution for the contradiction between environmental protection and concentration, intensification and specialisation in swine production. This contradiction created a threat to the supply of swine to the food processing company. In the food production activity, the contradiction was expressed as a contradiction between the desire of the company to become a sustainable company and the situation in the outsourced farms. For the swine producers the contradiction was expressed between the contradictory rules in which the market exerted pressure which pushed for continual increases in scale, specialisation and concentration to keep the production economically viable, while the environmental rules imposed a limit to this expansion. Although the observed disturbances in the biogas system seemed to be merely technical and localised within the farms, the analysis proposed that these disturbances were formed in and between the activity systems involved in the network of BPfS during the implementation. The disturbances observed could be explained by four contradictions: a) contradictions between the new, more expanded activity of sustainable swine production and the old activity, b) a contradiction between the concept of BP for carbon credits and BP for local use in the BPfS that was implemented, c) contradictions between the new UNFCCC1 methodology for applying for carbon credits and the small size of the farms, and d) between the technologies of biogas use and burning available in the market and the small size of the farms. The main finding of this study relates to the zone of proximal development (ZPD) of the BPfS in Sadia food production chain. The model is first developed as a general model of concepts of BPfS and further developed here to the specific case of the BPfS in the 3S Programme. The model is composed of two developmental dimensions: societal and functional integration. The dimension of societal integration refers to the level of integration with other activities outside the farm. At one extreme, biogas production is self-sufficient and highly independent and the products of BP are consumed within the farm, while at the other extreme BP is highly integrated in markets and networks of collaboration, and BP products are exchanged within the markets. The dimension of functional integration refers to the level of integration between products and production processes so that economies of scope can be achieved by combining several functions using the same utility. At one extreme, BP is specialised in only one product, which allows achieving economies of scale, while at the other extreme there is an integrated production in which several biogas products are produced in order to maximise the outcomes from the BP system. The analysis suggests that BP is moving towards a societal integration, towards the market and towards a functional integration in which several biogas products are combined. The model is a hypothesis to be further tested through interventions by collectively constructing the new proposed concept of BPfS. Another important contribution of this study refers to the concept of the learning challenge. Three central learning challenges for developing a sustainable system of BP in the 3S Programme were identified: 1) the development of cheaper and more practical technologies of burning and measuring the gas, as well as the reduction of costs of the process of certification, 2) the development of new ways of using biogas within farms, and 3) the creation of new local markets and networks for selling BP products. One general learning challenge is to find more varied and synergic ways of using BP products than solely for the production of carbon credits. Both the model of the ZPD of BPfS and the identified learning challenges could be used as learning tools to facilitate the development of biogas production systems. The proposed model of the ZPD could be used to analyse different types of agricultural activities that face a similar contradiction. The findings could be used in interventions to help actors to find their own expansive actions and developmental projects for change. Rather than proposing a standardised best concept of BPfS, the idea of these learning tools is to facilitate the analysis of local situations and to help actors to make their activities more sustainable.
Resumo:
Trans-national corporations (TNCs) expanding their production bases to developing countries having better conditions of manufacturing and domestic markets provide increasing opportunities for local small and medium enterprises (SMEs) to have subcontracting relationships with these TNCs Even though some theoretical and a few empirical studies throw light on the nature of assistance provided by TNCs to local SMEs through subcontracting relationships none of the studies so far quantitatively analysed the role of this assistance on the innovative performance of SMEs leading to better economic performance This paper probes the extent and diversity of assistance received by SMEs from a TNC through subcontracting and its influence on technological innovations and economic performance of SMEs in the Indian automobile industry Indian SMEs were able to receive mainly product related and purchase process assistance thereby implying that subcontracting is largely confined to purchase-supply relationships However assistance received through subcontracting is beneficial as It promoted technological innovations of SMEs the higher the degree of assistance the higher the level of innovations carried out by these SMEs which in turn facilitated their economic performance Thus this paper substantiates in the Indian context that subcontracting relationship with a TNC can be an important source of technological innovations and enhanced economic performance for SMEs (C) 2010 Elsevier Ltd All rights reserved
Resumo:
The inefficient use of energy in a large number of industries is slowly developing into a major energy crisis in the already power-starved Karnataka State, India. This study attempts to bring out the present inefficient pattern of energy use in an electro-metallurgical industry. It also brings out the considerable scope for energy conservation, especially by increasing the efficiency of the end-use devices used. This concept, when extended to other industries, wherein increasing efficiency of the end-use devices would provide the desired end results with small energy input. This, in turn, would result in a slower rate of energy growth as well as saving in energy use.
Resumo:
This paper analyses the influence of management on Technical Efficiency Change (TEC) and Technological Progress (TP) in the communication equipment and consumer electronics sub-sectors of Indian hardware electronics industry. Each sub-sector comprises 13 sample firms for two time periods.The primary objective is to determine the relative contribution of TP and TEC to TFP Growth (TFPG) and to establish the influence of firm specific operational management decision variables on these two components. The study finds that both the sub-sectors have strived and achieved steady TP but not TEC in the period of economic liberalisation to cope with the intensifying competition. The management decisions with respect to asset and profit utilization, vertical integration, among others, improved TP and TE in the sub-sectors. However, R&D investments and technology imports proved costly for TFP indicating inadequate efforts and/or poor resource utilisation by the management. Management was found to be complacent in terms of improving or developing their own technology as indicated by their higher dependence on import of raw materials and no influence of R&D on TP.
Energy Efficiency Level in Small-Scale Industry Clusters: Does Entrepreneurial factor play any role?
Resumo:
This paper analyses the efficiency and productivity growth of Electronics industry, which is considered one of the vibrant and rapidly growing manufacturing industry sub-sectors of India in the liberalization era since 1991. The main objective of the paper is to examine the extent and growth of Total Factor Productivity (TFP) and its components namely, Technical Efficiency Change (TEC) and Technological Progress (TP) and its contribution to total output growth. In this study, the electronics industry is broadly classified into communication equipments, computer hardware, consumer electronics and other electronics, with the purpose of performing a comparative analysis of productivity growth for each of these sub-sectors for the time period 1993-2004. The paper found that the sub-sectors have improved in terms of economies of scale and contribution of capital.The change in technical efficiency and technological progress moved in reverse directions. Three of the four industry witnessed growth in the output primarily due to TFPG and the contribution of input growth to output growth had been negative/negligible, except for Computer hardware where contribution from both input growth and TFPG to output growth were prominent. The paper explored the possible reasons that addressed the issue of low technical efficiency and technological progress in the industry.