925 resultados para synthetic polymers


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Atrial tissue expresses both connexin 40 (Cx40) and 43 (Cx43) proteins. To assess the relative roles of Cx40 and Cx43 in atrial electrical propagation, we synthesized cultured strands of atrial myocytes derived from mice with genetic deficiency in Cx40 or Cx43 expression and measured propagation velocity (PV) by high-resolution optical mapping of voltage-sensitive dye fluorescence. The amount of Cx40 and/or Cx43 in gap junctions was measured by immunohistochemistry and total or sarcolemmal Cx43 or Cx40 protein by immunoblotting. Progressive genetic reduction in Cx43 expression decreased PV from 34+/-6 cm/sec in Cx43(+/+) to 30+/-8 cm/sec in Cx43(+/-) and 19+/-11 cm/sec in Cx43(-/-) cultures. Concomitantly, the cell area occupied by Cx40 immunosignal in gap junctions decreased from 2.0+/-1.6% in Cx43(+/+) to 1.7+/-0.5% in Cx43(+/-) and 1.0+/-0.2% in Cx43(-/-) strands. In contrast, progressive genetic reduction in Cx40 expression increased PV from 30+/-2 cm/sec in Cx40(+/+) to 40+/-7 cm/sec in Cx40(+/-) and 45+/-10 cm/sec in Cx40(-/-) cultures. Concomitantly, the cell area occupied by Cx43 immunosignal in gap junctions increased from 1.2+/-0.9% in Cx40(+/+) to 2.8+/-1.4% in Cx40(+/-) and 3.1+/-0.6% in Cx40(-/-) cultures. In accordance with the immunostaining results, immunoblots of the Triton X-100-insoluble fraction revealed an increase of Cx43 in gap junctions in extracts from Cx40-ablated atria, whereas total cellular Cx43 remained unchanged. Our results suggest that the relative abundance of Cx43 and Cx40 is an important determinant of atrial impulse propagation in neonatal hearts, whereby dominance of Cx40 decreases and dominance of Cx43 increases local propagation velocity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AIM: To investigate the inhibitory effects of taltobulin (HTI-286), a synthetic analogue of natural hemiasterlin derived from marine sponges, on hepatic tumor growth in vitro and in vivo. METHODS: The potential anti-proliferative effects of HTI-286 on different hepatic tumor cell lines in vitro and in vivo were examined. RESULTS: HTI-286 significantly inhibited proliferation of all three hepatic tumor cell lines (mean IC50 = 2 nmol/L +/- 1 nmol/L) in vitro. Interestingly, no decrease in viable primary human hepatocytes (PHH) was detected under HTI-286 exposure. Moreover, intravenous administration of HTI-286 significantly inhibited tumor growth in vivo (rat allograft model). CONCLUSION: HTI-286 might be considered a potent promising drug in treatment of liver malignancies. HTI-286 is currently undergoing clinical evaluation in cancer patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Partial or full life-cycle tests are needed to assess the potential of endocrine-disrupting compounds (EDCs) to adversely affect development and reproduction of fish. Small fish species such as zebrafish, Danio rerio, are under consideration as model organisms for appropriate test protocols. The present study examines how reproductive effects resulting from exposure of zebrafish to the synthetic estrogen 17alpha-ethinylestradiol (EE2) vary with concentration (0.05 to 10 ng EE2 L(-1), nominal), and with timing/duration of exposure (partial life-cycle, full life-cycle, and two-generation exposure). Partial life-cycle exposure of the parental (F1) generation until completion of gonad differentiation (0-75 d postfertilization, dpf) impaired juvenile growth, time to sexual maturity, adult fecundity (egg production/female/day), and adult fertilization success at 1.1 ng EE2 L(-1) and higher. Lifelong exposure of the F1 generation until 177 dpf resulted in lowest observed effect concentrations (LOECs) for time to sexual maturity, fecundity, and fertilization success identical to those of the developmental test (0-75 dpf), but the slope of the concentration-response curve was steeper. Reproduction of zebrafish was completely inhibited at 9.3 ng EE2 L(-1), and this was essentially irreversible as a 3-mo depuration restored fertilization success to only a very low rate. Accordingly, elevated endogenous vitellogenin (VTG) synthesis and degenerative changes in gonad morphology persisted in depurated zebrafish. Full life-cycle exposure of the filial (F2) generation until 162 dpf impaired growth, delayed onset of spawning and reduced fecundity and fertilization success at 2.0 ng EE2 L(-1). In conclusion, results show that the impact of estrogenic agents on zebrafish sexual development and reproductive functions as well as the reversibility of effects, varies with exposure concentration (reversibility at < or = 1.1 ng EE2 L(-1) and irreversibility at 9.3 ng EE2 L(-1)), and between partial and full life-cycle exposure (exposure to 10 ng EE2 L(-1) during critical period exerted no permanent effect on sexual differentiation, but life-cycle exposure did).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bioplastics are polymers (such as polyesters) produced from bacterial fermentations that are biodegradable and nonhazardous. They are produced by a wide variety of bacteria and are made only when stress conditions allow, such as when nutrient levels are low, more specifically levels of nitrogen and oxygen. These stress conditions cause certain bacteria to build up excess carbon deposits as energy reserves in the form of polyhydroxyalkanoates (PHAs). PHAs can be extracted and formed into actual plastic with the same strength of conventional, synthetic-based plastics without the need to rely on foreign petroleum. The overall goal of this project was to select for a bacteria that could grow on sugars found in the lignocellulosic biomass, and get the bacteria to produce PHAs and peptidoglycan. Once this was accomplished the goal was to extract PHAs and peptidoglycan in order to make a stronger more rigid plastic, by combing them into a co-polymer. The individual goals of this project were to: (1) Select and screen bacteria that are capable of producing PHAs by utilizing the carbon/energy sources found in lignocellulosic biomass; (2) Maximize the utilization of those sugars present in woody biomass in order to produce optimal levels of PHAs. (3) Use room temperature ionic liquids (RTILs) in order to separate the cell membrane and peptidoglycan, allowing for better extraction of PHAs and more intact peptidoglycan. B. megaterium a Gram-positive PHA-producing bacterium was selected for study in this project. It was grown on a variety of different substrates in order to maximize both its growth and production of PHAs. The optimal conditions were found to be 30°C, pH 6.0 and sugar concentration of either 30g/L glucose or xylose. After optimal growth was obtained, both RTILs and enzymatic treatments were used to break the cell wall, in order to extract the PHAs, and peptidoglycan. PHAs and peptidoglycan were successfully extracted from the cell, and will be used in the future to create a new stronger co-polymer. Peptidoglycan recovery yield was 16% of the cells’ dry weight.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A comprehensive knowledge of cell wallstructure and function throughout the plant kingdom is essential to understanding cell wall evolution. The fundamental understanding of the charophycean green algal cell wall is broadening. The similarities and differences that exist between land plant and algal cell walls provide opportunities to understand plant evolution. A variety of polymers previously associated with higher plants were discovered in the charophycean green algae (CGA), including homogalacturonans, cross-linking glycans, arabinogalactan protein, β-glucans, and cellulose. The cellulose content of CGA cell walls ranged from 6% to 43%, with the higher valuescomparable to that found in the primary cell wall of land plants (20-30%). (1,3)β-glucans were found in the unicellular Chlorokybus atmophyticus, Penium margaritaceum, and Cosmarium turpini, the unbranched filamentous Klebsormidium flaccidum, and the multicellular Chara corallina. The discovery of homogalacturonan in Penium margaritaceum representsthe first confirmation of land plant-type pectinsin desmids and the second rigorous characterization of a pectin polymer from the charophycean algae. Homogalacturonan was also indicated from the basal species Chlorokybus atmophyticus and Klebsormidium flaccidum. There is evidence of branched pectins in Cosmarium turpini and linkage analysis suggests the presence of type I rhamnogalacturonan (RGI). Cross-linking β-glucans are associated with cellulose microfibrils during land plant cell growth, and were found in the cell wall of CGA. The evidence of mixed-linkage glucan (MLG) in the 11 charophytesis both suprising and significant given that MLG was once thought to be specific to some grasses. The organization and structure of Cosmarium turpini and Chara corallina MLG was found to be similar to that of Equisetumspp., whereas the basal species of the CGA, Chlorokybus atmophyticus and Klebsormidium flaccidum, have unique organization of alternating of 3- and 4-linkages. The significance of this result on the evolution of the MLG synthetic pathway has yet to be determined. The extracellular matrix (ECM) of Chlorokybus atmophyticus, Klebsormidium flaccidum, and Spirogyra spp. exhibits significant biochemical diversity, ranging from distinct “land plant” polymers to polysaccharides unique to these algae. The neutral sugar composition of Chlorokybus atmophyticus hot water extract and Spirogyra extracellular polymeric substance (EPS), combined with antibody labeling results, revealed the distinct possibility of an arabinogalactan protein in these organisms. Polysaccharide analysis of Zygnematales (desmid) EPS, indicated a probable range of different EPS backbones and substitution patterns upon the core portions of the molecules. Desmid EPS is predominately composed of a complex matrix of branched, uronic acid containing polysaccharides with ester sulfate substitutions and, as such, has an almost infinite capacity for various hydrogen bonding, hydrophobic interaction and ionic cross-bridging motifs, which characterize their unique function in biofilms. My observations support the hypothesis that members of the CGA represent the phylogenetic line that gave rise to vascular plants and that the primary cell wall of vascular plants many have evolved directly from structures typical of the cell wall of filamentous green algae found in the charophycean green algae.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Testing a new method of nanoindentation using the atomic force microscope (AFM) was the purpose of this research. Nanoindentation is a useful technique to study the properties of materials on the sub-micron scale. The AFM has been used as a nanoindenter previously; however several parameters needed to obtain accurate results, including tip radius and cantilever sensitivity, can be difficult to determine. To solve this problem, a new method to determine the elastic modulus of a material using the atomic force microscope (AFM) has been proposed by Tang et al. This method models the cantilever and the sample as two springs in a series. The ratio of the cantilever spring constant (k) to diameter of the tip (2a) is treated in the model as one parameter (α=k/2a). The value of a, along with the cantilever sensitivity, are determined on two reference samples with known mechanical properties and then used to find the elastic modulus of an unknown sample. To determine the reliability and accuracy of this technique, it was tested on several polymers. Traditional depth-sensing nanoindentation was preformed for comparison. The elastic modulus values from the AFM were shown to be statistically similar to the nanoindenter results for three of the five samples tested.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Presented here, is the work done with a series of binucleating ligands based on phosphine and phosphine oxide appended p-hydroquinones and their reactions towards various metals sources. The long term goal of the project was to produce coordination polymers that would have novel electronic, magnetic, and optical properties which would be of use in the field of molecular electronics. Binucleating ligands contained a p-hydroquinone motif in which various phosphine- and phosphine oxide substituents have been placed in the ortho position relative to each of the hydroxy position were synthesized. A previously published synthetic method for such lugands utilized n-BuLi to form a phenyl lithium intermediate which was quenched with chlorodiphenylphosphine. This technique was also used to produce a ligand with diisopropylphosphine groups. Phosphine ligands, containing the same structural motif, were also generated using LDA as the lithiating agent. This technique was found to be higher yielding. Phosphine chalcogenide ligands were accessed by further oxidizing the low valent phosphorous centers with either hydrogen peroxide or with elemental sulfur. These ligands were characterized using multinuclear NMR, low and high resolution mass spectroscopy, FTIR, and single crystal X-ray diffraction. Their electrochemical properties were explored with cyclic voltammetry. The phosphine appended ligands were used in the synthesis of a several bimetallic complexes. It was found that the ligands readily reacted with NiCp2 and NiCp*2, displacing one of the cyclopentadiene (Cp) or pentamethylcyclopentadiene (Cp*) rings. A cyclopentadiene complexes, containing diisopropylphine, was readily oxidized by[FeCp2]PF6 to give a NMR silent mixed valence complex. Cyclic voltammetry of these complexes showed a number of reversible waves with a large potential separation. The mixed valence compounds also showed a large absorbance band in the NIR region which was assigned to be an intervalence charge transfer. The cyclic voltammetry and NIR spectroscopy suggest that these systems are very capable of efficient metal-to-metal charge transfer. These complexes were characterized by multinuclear NMR, single crystal X-ray diffraction, UV/VIS-NIR spectroscopy and elemental analysis. The phosphine oxide ligands were reacted with a variety of different metal sources but limited success was gained in obtaining single crystals, allowing structural characterization of these compounds. Single crystals were obtained from products generated by reacting the diphenylphosphine oxide ligand with (Bipy)Cu(NO3)2 and Cu(NO3)2. In all cases the ligand had been further oxidized to a 2,5-dihydroxy-1,4-benzoquinone motif. In the reaction between the diphenylphosphine oxide ligand and (Bipy)Cu(NO3)2 it was found that the phosphine oxide moiety was involved with intermolecular coordination leading to the formation of a one-dimensional polymer composed of a series of bimetallic complexes tethered together. When NaSbF6 was present in the reaction with (Bipy)Cu(NO3)2 a unique tetrametallic complex was formed. Here the phospine oxide moiety was oriented so that two bimetallic complexes were bound together. If only Cu(NO3)2 was present, a two-dimensional polymeric sheet was formed where the ligand was present in two different coordination modes. The electronic properties of these complexes remained to be assessed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We are interested in the syntheses of new complexes and in their characterization by single crystal X-ray diffraction techniques. Once we understand the structures, studies aimed at understanding uses of these complexes in the field of catalytic epoxidation using complexes soluble in water and syntheses of thin films (not assessed) were conducted. The syntheses, characterization and catalytic properties of a series of mononuclear, dinuclear and tetranuclear molybdenum and tungsten oxo complexes are described. The syntheses and structural characterization of two copper coordination polymers with 3,5-dihydroxylbenzoate ligand, and five paddlewheel shaped copper dendrimers coordinated with Fréchet-type dendrons are also detailed. The background of this dissertation is outlined in Chapter 1. Chapter 2 describes the syntheses, and characterization of two new mononuclear molybdenum(VI) and tungsten(VI) oxo complexes, MoO2Cl2(OPPh2CH2OH)2, and WO2Cl2(OPPh2CH2OH)2, bearing hydrophilic phosphine oxide ligand. The catalytic properties of these complexes for the epoxidation of cis-cyclooctene were also studied. Two new dinuclear molybdenum(VI) and tungsten(VI) oxo complexes Mo2O4Cl2[(HOCH2)PhPOO]2, and (CH3O)2(O)W(μ-O)(μ-O2PPh2)2W(O)(CH3O)2, bearing organophosphinate ligand are described in Chapter 3 and 4. Chapter 4 and 5 describes the syntheses and characterization of tetranuclear molybdenum(V) oxo complexes bearing various organophosphinate ligands. The catalytic abilities of these complexes for the epoxidation of cis-cyclooctene in the presence of hydrogen peroxide as oxidant were explored as well. Various spectroscopic methods, such as IR, UV-vis, and NMR are used to characterize the nature of these complexes. Crystal structures of compounds MoO2Cl2(OPPh2CH2OH)2, WO2Cl2(OPPh2CH2OH)2, Mo2O4Cl2[(HOCH2)PhPOO]2, (CH3O)2(O)W(μ-O)(μ-O2PPh2)2W(O)(CH3O)2, and Mo4(µ3-O)4(µ-O2PR2)4O4 (R=Ph, Me, ClCH2, o-C6H4(CH2)2) are also presented. The syntheses, and structural characterization of three copper(II) coordination polymers bearing 3,5-dihydroxybenzoate ligand are described in Chapter 6. Two copper(II) coordination polymers, [Cu2(3,5-dhb)2(pyridine)4]n, and [Cu2(3,5-dhb)4]n were afforded based on different amount of pyridine used in the reaction. The structures of these complexes are further built into 2D or 3D networks via inter or intra hydrogen bonds. The syntheses and structural characterization of the zinc(II) monomer, Zn(3,5-dhb)2(pyridine)2 is also described in this Chapter. Chapter 7 describes the syntheses, and characterization of five dendronized dicopper complexes bearing different generations of Fréchet-type dendrons. The structures of 3,5- bis(benzoyloxl)benzoic acid, 3,5-(PhCOO)2PhCOOH (G1), Cu2(3,5-dhb)4(THF)2, Cu2(G1)4(pyridine)2, and Cu2(G1)4(CH3OH)2 were characterized unambiguously by single X-ray diffraction. In addition, all compounds were characterized by FT-IR, UV-vis spectroscopy and elemental analyses.