947 resultados para suspended concrete floors, floor vibration, vibration serviceability


Relevância:

30.00% 30.00%

Publicador:

Resumo:

O presente trabalho foi desenvolvido na obra do Aproveitamento Hidroelétrico de Foz Tua onde a autora teve oportunidade de realizar o estágio curricular junto da equipa da Fiscalização no período de 2 de Fevereiro de 2015 a 31 de Julho de 2015. A elaboração do presente trabalho pretende transmitir conhecimentos adquiridos relacionados com a constituição de um Aproveitamento Hidroelétrico, os tipos de barragens existentes, monitorização e controlo da segurança da estrutura da Barragem, controlo de qualidade de betão e o processo construtivo de uma Barragem. A construção da Barragem do Aproveitamento Hidroelétrico de Foz Tua tem sido realizada através do método tradicional, que consiste na aplicação de betão convencional compactado por vibração interna. Ao longo deste processo, foram aplicadas diversas técnicas construtivas, nomeadamente: escavação, betonagem, refrigeração artificial, injeção de juntas e tratamento de fundações. Neste trabalho foram ainda analisados os cuidados de segurança necessários neste tipo de estruturas, tendo como base o Regulamento de Segurança de Barragens. Este regulamento define as regras a seguir durante a execução da barragem e a monotorização que deve ser efetuada à mesma, permitindo assim o controlo da segurança da estrutura na sua construção e vida útil. É necessário ainda existir um controlo da qualidade, produção e aplicação do betão na estrutura de modo a aumentar a segurança, qualidade e durabilidade da mesma.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Frames are the most widely used structural system for multistorey buildings. A building frame is a three dimensional discrete structure consisting of a number of high rise bays in two directions at right angles to each other in the vertical plane. Multistorey frames are a three dimensional lattice structure which are statically indeterminate. Frames sustain gravity loads and resist lateral forces acting on it. India lies at the north westem end of the Indo-Australian tectonic plate and is identified as an active tectonic area. Under horizontal shaking of the ground, horizontal inertial forces are generated at the floor levels of a multistorey frame. These lateral inertia forces are transferred by the floor slab to the beams, subsequently to the columns and finally to the soil through the foundation system. There are many parameters that affect the response of a structure to ground excitations such as, shape, size and geometry of the structure, type of foundation, soil characteristics etc. The Soil Structure Interaction (SS1) effects refer to the influence of the supporting soil medium on the behavior of the structure when it is subjected to different types of loads. Interaction between the structure and its supporting foundation and soil, which is a complete system, has been modeled with finite elements. Numerical investigations have been carried out on a four bay, twelve storeyed regular multistorey frame considering depth of fixity at ground level, at characteristic depth of pile and at full depth. Soil structure interaction effects have been studied by considering two models for soil viz., discrete and continuum. Linear static analysis has been conducted to study the interaction effects under static load. Free vibration analysis and further shock spectrum analysis has been conducted to study the interaction effects under time dependent loads. The study has been extended to four types of soil viz., laterite, sand, alluvium and layered.The structural responses evaluated in the finite element analysis are bending moment, shear force and axial force for columns, and bending moment and shear force for beams. These responses increase with increase in the founding depth; however these responses show minimal increase beyond the characteristic length of pile. When the soil structure interaction effects are incorporated in the analysis, the aforesaid responses of the frame increases upto the characteristic depth and decreases when the frame has been analysed for the full depth. It has been observed that shock spectrum analysis gives wide variation of responses in the frame compared to linear elastic analysis. Both increase and decrease in responses have been observed in the interior storeys. The good congruence shown by the two finite element models viz., discrete and continuum in linear static analysis has been absent in shock spectrum analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glass fiber reinforced polymer (GFRP) rebars have been identified as an alternate construction material for reinforcing concrete during the last decade primarily due to its strength and durability related characteristics. These materials have strength higher than steel, but exhibit linear stress–strain response up to failure. Furthermore, the modulus of elasticity of GFRP is significantly lower than that of steel. This reduced stiffness often controls the design of the GFRP reinforced concrete elements. In the present investigation, GFRP reinforced beams designed based on limit state principles have been examined to understand their strength and serviceability performance. A block type rotation failure was observed for GFRP reinforced beams, while flexural failure was observed in geometrically similar control beams reinforced with steel rebars. An analytical model has been proposed for strength assessment accounting for the failure pattern observed for GFRP reinforced beams. The serviceability criteria for design of GFRP reinforced beams appear to be governed by maximum crack width. An empirical model has been proposed for predicting the maximum width of the cracks. Deflection of these GFRP rebar reinforced beams has been predicted using an earlier model available in the literature. The results predicted by the analytical model compare well with the experimental data

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Experimental buildings at Butser Ancient Farm and St. Fagans (UK) and Lejre (Denmark) were sampled to investigate micromorphology of known activity areas, to contribute to our understanding of the internal use of space in excavated buildings and formation processes of house floor deposits. The experimental buildings provided important information relating to activity residues and sediments over the 16 years that the buildings were in use. Specifically, these results contribute to our understanding of the routes and cycles for transportation of materials in occupation contexts, which can be used to inform archaeological studies. It has been possible to identify internal ‘hot spots’ within the buildings for the deposition of activity residues and for the formation of specific deposit types. Analysis also highlighted postdepositional alterations occurring in internal occupation deposits, which has provided a means of identifying roofed and unroofed spaces in the archaeological record.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Carbon fibre reinforced polymer (CFRP) has been used frequently to retrofit concrete structures. Strengthening efficiency is related to the CFRP application process and the characteristics of the bonding agent. In this paper the mechanism of interface shear behaviour in CFRP to concrete beams is discussed considering previous test observations and mathematical models. This paper then discusses the consequences of introducing interface slip which reduces the integrity of the composite section, however improve ductility and delay debonding failure. The paper suggests that using softer bonding agent as well as setting limits on the interface slip could ensure acceptable serviceability and ductile behaviour.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Since Guided wave (GW) is sensitive to small damage and can propagate a relatively longer distance with relatively less attenuation, GW-based method has been found as an effective and efficient way to detect incipient damages. In this study, a full-scale concrete joint was constructed to further verify the effectiveness of GW-based method on real civil structures. GW tests were conducted in three stages, including baseline, serviceability and damage conditions. The waves are excited by one actuator and received by several sensors, which are made up of independent piezoelectric elements. Experimental results show that the mehod is promising for damage identification in practices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Slab-girder bridges are widely used in Australia. The shear connection between reinforced concrete slab and steel girder plays an important role in composite action. In order to test the suitability and efficiency of various vibration-based damage identification methods to assess the integrity of the structure, a scaled composite bridge model was constructed in the laboratory. Some removable shear connectors were specially designed and fabricated to link the beam and slab that were cast separately. In this test, two static loads were acted in the 1/3 points of the structure. In the first stage, dynamic test was conducted under different damage scenarios, where a number of shear connectors were removed step by step. In the second stage, the static load is increased gradually until concrete slab cracked. Static tests were conducted continuously to monitor the deflection and loading on the beam. Dynamic test was carried out before and after concrete cracking. Both static and dynamic results can be used to identify damage in the structure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Slab–girder structures composed of steel girder and reinforced concrete slab are widely used in buildings and bridges in the world. Their advantages are largely based on the composite action through the shear connection between slab and girder. In order to assess the integrity of this kind of structures, numerous vibration-based damage identification methods have been proposed. In this study, a scaled composite slab–girder model was constructed in the laboratory. Some removable shear connectors were specially designed and fabricated to connect the girder and slab that were cast separately. Then, a two-stage experiment including both static and vibration tests was performed. In the first stage, vibration tests were conducted under different damage scenarios, where a certain number of shear connectors at certain locations were removed step by step. In the second stage, two sets of hydraulic loading equipment were used to apply four-point static loads in the test. The loads are increased gradually until concrete slab cracked. The loading histories as well as deflections at different points of the beam are recorded. Vibration test was carried out before and after concrete cracking. Experimental results show that the changes of mode shapes and relative displacement between slab and girder may be two promising parameters for damage identification of slab–girder structures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Strengthening and rehabilitation have been increasingly applied in many structures to improve their capacity and serviceability. Fiber Reinforced Polymer (FRP) materials are universally known for their ability to improve the load capacity of damaged structural elements because of their high linear-elastic behavior. However, enhancing the capacity of structural elements that are exposed to repeated load coupled with harsh environment is an area that requires further investigation. This research focused on experimental analysis of the behavior and response of confined and unconfined concrete compression members (300mm x 150mm) under repeated load while exposed to 1440 cycles of seawater splash zone in United Arab Emirates (UAE). Confining concrete compression members with Carbon Fiber Reinforced Polymer (CFRP) and Glass Fiber Reinforced Polymer (GFRP) sheets have increased the load capacity compared to the control sample at room temperature by 110% and 84%, respectively. Results showed that the average value of compressive strength for the confined concrete exposed to sea water splash zone conditions for CFRP and GFRP specimens has decreased by 33% and 23%, respectively, compared to the confined concrete in the room temperature. However, GFRP specimens showed higher performance in compressive strength under sea water splash zone than those of the CFRP specimens. Different mode of failures such as delamination, de-bonding and combination of such modes were observed and related to various exposure factors and mechanical properties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As atividades que envolvem o uso de explosivos devem ser controladas, não só com relação ao desmonte de estruturas (rocha e outros materiais), mas também quanto a danos estruturais em edificações próximas (casas, edificações históricas, etc.) e outros impactos ambientais como vibração, propagação de ruídos, ultralançamentos e sobrepressão atmosférica. Tais atividades são regidas por normas técnicas que sugerem parâmetros de medição e limites definidos na avaliação de prováveis danos. No caso específico de minerações em áreas urbanas, a velocidade de vibração de partícula (Vp), normalmente expressa em mm/s, é o parâmetro que tem dado melhor correlação na avaliação de possíveis danos às estruturas civis, atribuídos às vibrações do terreno. As diferentes normas existentes apresentam valores de Vp que variam de 2mm/s para edifícios históricos até 150mm/s para construções em concreto armado. A maioria delas considera na avaliação de danos estruturais, além da velocidade, a freqüência da vibração. Algumas normas foram elaboradas com base em dados experimentais, analisando parâmetros como o tipo de construção e o material nela utilizados, outras se basearam apenas em valores empíricos, mas todas apresentam valores conservativos. A norma brasileira não avalia o parâmetro freqüência e não classifica os diferentes tipos de estruturas civis, restringindo-se ao valor resultante da velocidade de vibração como parâmetro medido, sendo, assim, limitada e deficiente em relação às normas internacionais. A coletânea aqui apresentada reuniu as normas nas Américas e em outros continentes, além de uma comparação com as normas européias mais importantes em âmbito mundial.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Previous studies have shown that membrane elevation results in predictable bone formation in the maxillary sinus provided that implants can be placed as tent poles. In situations with an extremely thin residual crest which impairs implant placement, it is possible that a space-making device can be used under the sinus membrane to promote bone formation prior to placement of implants. Purpose: The present study was conducted to test the hypothesis that the use of a space-making device for elevation of the sinus membrane will result in predictable bone formation at the maxillary sinus floor to allow placement of dental implants. Materials and Methods: Eight tufted capuchin primates underwent bilateral sinus membrane elevation surgery, and a bioresorbable space-making device, about 6 mm wide and 6 mm in height, was placed below the elevated membrane on the sinus floor. An oxidized implant (Nobel Biocare AB, Gothenburg, Sweden) was installed in the residual bone protruding into the created space at one side while the other side was left without an implant. Four animals were sacrificed after 6 months of healing. The remaining four animals received a second implant in the side with a space-making device only and followed for another 3 months before sacrifice. Implant stability was assessed through resonance frequency analysis (RFA) using the Osstell™ (Osstell AB, Gothenburg, Sweden) at installation, 6 months and 9 months after the first surgery. The bone-implant contact (BIC) and bone area inside the threads (BA) were histometrically evaluated in ground sections. Results: Histologically there were only minor or no signs of bone formation in the sites with a space-making device only. Sites with simultaneous implant placement showed bone formation along the implant surface. Sites with delayed implant placement showed minor or no bone formation and/or formation of a dense fibrous tissue along the apical part of the implant surface. In the latter group the apical part of the implant was not covered with the membrane but protruded into the sinus cavity. Conclusions: The use of a space-making device, with the design used in the present study, does not result in bone formation at the sinus floor. However, membrane elevation and simultaneous placement of the device and an implant does result in bone formation at the implant surface while sites with implants placed 6 months after membrane elevation show only small amounts of bone formation. It is suggested that lack of stabilization of the device and/or a too extensive elevation of the membrane may explain the results. © 2009, Wiley Periodicals, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work is to control the quality of the structures, procedures for addressing the assembly of the formwork, scaffolding and the frame of pillars, beams and slabs. He had also intended to show that the vibration of launch and concrete items are also important, if poorly implemented can undermine the structure. This work also shows that the mapping becomes essential if there is some problem in the concrete, where concrete was launched, could be identified. And finally check the product where the structure will be evaluated for how much their quality

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper shows the results of an experimental investigation carried out on a connection element of glulam and concrete composite structures, through double-sided push-out shear tests. The connection system was composed of perforated steel plates glued with epoxy adhesive. Five specimens were made and tested under shear forces. This innovative connection system showed an average initial slip modulus equivalent to 339.4 kN/mm. In addition, the connection system was evaluated by means of numerical simulations and the software ANSYS was used for this purpose. The numerical simulations demonstrated good agreement with the experimental data, especially in the regime of elastic-linear behavior of materials. (C) 2011 Elsevier Ltd. All rights reserved.