990 resultados para surface waters
Resumo:
Thirty seven deep-sea sediment cores from the Arabian Sea were studied geochemically (49 major and trace elements) for four time slices during the Holocene and the last glacial, and in one high sedimentation rate core (century scale resolution) to detect tracers of past variations in the intensity of the atmospheric monsoon circulation and its hydrographic expression in the ocean surface. This geochemical multi-tracer approach, coupled with additional information on the grain size composition of the clastic fraction, the bulk carbonate and biogenic opal contents makes it possible to characterize the sedimentological regime in detail. Sediments characterized by a specific elemental composition (enrichment) originated from the following sources: river suspensions from the Tapti and Narbada, draining the Indian Deccan traps (Ti, Sr); Indus sediments and dust from Rajasthan and Pakistan (Rb, Cs); dust from Iran and the Persian Gulf (Al, Cr); dust from central Arabia (Mg); dust from East Africa and the Red Sea (Zr/Hf, Ti/Al). Corg, Cd, Zn, Ba, Pb, U, and the HREE are associated with the intensity of upwelling in the western Arabian Sea, but only those patterns that are consistently reproduced by all of these elements can be directly linked with the intensity of the southwest monsoon. Relying on information from a single element can be misleading, as each element is affected by various other processes than upwelling intensity and nutrient content of surface water alone. The application of the geochemical multi-tracer approach indicates that the intensity of the southwest monsoon was low during the LGM, declined to a minimum from 15,000-13,000 14C year BP, intensified slightly at the end of this interval, was almost stable during the Bölling, Alleröd and the Younger Dryas, but then intensified in two abrupt successions at the end of the Younger Dryas (9900 14C year BP) and especially in a second event during the early Holocene (8800 14C year BP). Dust discharge by northwesterly winds from Arabia exhibited a similar evolution, but followed an opposite course: high during the LGM with two primary sources-the central Arabian desert and the dry Persian Gulf region. Dust discharge from both regions reached a pronounced maximum at 15,000-13,000 14C year. At the end of this interval, however, the dust plumes from the Persian Gulf area ceased dramatically, whereas dust discharge from central Arabia decreased only slightly. Dust discharge from East Africa and the Red Sea increased synchronously with the two major events of southwest monsoon intensification as recorded in the nutrient content of surface waters. In addition to the tracers of past dust flux and surface water nutrient content, the geochemical multi-tracer approach provides information on the history of deep sea ventilation (Mo, S), which was much lower during the last glacial maximum than during the Holocene. The multi-tracer approach-i.e. a few sedimentological parameters plus a set of geochemical tracers widely available from various multi-element analysis techniques-is a highly applicable technique for studying the complex sedimentation patterns of an ocean basin, and, specifically in the case of the Arabian Sea, can even reveal the seasonal structure of climate change.
Resumo:
Reconstructing past modes of ocean circulation is an essential task in paleoclimatology and paleoceanography. To this end, we combine two sedimentary proxies, Nd isotopes (epsilon-Nd) and the 231Pa/230Th ratio, both of which are not directly involved in the global carbon cycle, but allow the reconstruction of water mass provenance and provide information about the past strength of overturning circulation, respectively. In this study, combined 231Pa/230Th and epsilon-Nd down-core profiles from six Atlantic Ocean sediment cores are presented. The data set is complemented by the two available combined data sets from the literature. From this we derive a comprehensive picture of spatial and temporal patterns and the dynamic changes of the Atlantic Meridional Overturning Circulation over the past ~25 ka. Our results provide evidence for a consistent pattern of glacial/stadial advances of Southern Sourced Water along with a northward circulation mode for all cores in the deeper (>3000 m) Atlantic. Results from shallower core sites support an active overturning cell of shoaled Northern Sourced Water during the LGM and the subsequent deglaciation. Furthermore, we report evidence for a short-lived period of intensified AMOC in the early Holocene.
Resumo:
A uniform chronology for foraminifera-based sea surface temperature records has been established in more than 120 sediment cores obtained from the equatorial and eastern Atlantic up to the Arctic Ocean. The chronostratigraphy of the last 30,000 years is mainly based on published d18O records and 14C ages from accelerator mass spectrometry, converted into calendar-year ages. The high-precision age control provides the database necessary for the uniform reconstruction of the climate interval of the Last Glacial Maximum within the GLAMAP-2000 project.
Resumo:
The strength of the North Atlantic Meridional Overturning Circulation during climatically highly variable Marine Isotope Stage (MIS) 3 has attracted much attention in recent years. Here we present high-resolution Nd isotope compositions of past seawater derived from authigenic Fe-Mn oxyhydroxides recovered from drift sediments on the Blake Ridge in the deep western North Atlantic (ODP Leg 172, Site 1060, 3481 m water depth). The data cover the period from 45 to 35 ka BP, tracing circulation changes during major Heinrich iceberg discharge event 4 (H4, ~40-39 ka BP). The Nd isotope record suggests that there was no northern-source water (NSW) mass like modern NADW at the deeper part of Blake Ridge at any time between 45 and 35 ka. This is fundamentally different from the hydrographic situation during the Holocene where NADW extends below 4500 m at this location. The epsilon-Nd of past deep water recorded in the Blake Ridge sediments was least radiogenic during Dansgaard/Oeschger (D/O) Interstadial (IS) 8 (epsilon-Nd = -11.3) and most radiogenic immediately preceding IS 9 (epsilon-Nd = -9.8). More radiogenic compositions were also recorded during H4 (-10.2 <= epsilon-Nd <= -9.9). The Nd isotope variability in MIS 3 matches that of a physical bottom current strength reconstruction from the same location. Neither record follows the pattern of Northern Hemisphere D/O climatic cycles. In our record, reduced mixing with northern source waters started in stadial 12 and lasted until after H4 in stadial 9, followed by a rapid increase in NSW contribution thereafter. This major change in the Nd isotope record predates the iceberg discharge event Heinrich 4 by more than 3 ka indicating a shallowing of the water mass boundary between Glacial North Atlantic Intermediate Water and Southern Source Water beneath. This early change in bottom water properties at the deep Blake Ridge suggests that North Atlantic deep water advection may already have decreased several thousand years before the actual iceberg discharge event and associated freshening of the surface waters in the North Atlantic. The change can thus not be attributed to climatic events in the North Atlantic but may be related to changes in flux of deep water from the South.
Resumo:
We reconstruct the latest Paleocene and early Eocene (~57-50 Ma) environmental trends in the Arctic Ocean and focus on the Paleocene-Eocene thermal maximum (PETM) (~55 Ma), using strata recovered from the Lomonosov Ridge by the Integrated Ocean Drilling Program Expedition 302. The Lomonosov Ridge was still partially subaerial during the latest Paleocene and earliest Eocene and gradually subsided during the early Eocene. Organic dinoflagellate cyst (dinocyst) assemblages point to brackish and productive surface waters throughout the latest Paleocene and early Eocene. Dinocyst assemblages are cosmopolitan during this time interval, suggesting warm conditions, which is corroborated by TEX86'-reconstructed temperatures of 15°-18°C. Inorganic geochemistry generally reflects reducing conditions within the sediment and euxinic conditions during the upper lower Eocene. Spectral analysis reveals that the cyclicity, recorded in X-ray fluorescence scanning Fe data from close to Eocene thermal maximum 2 (~53 Ma, presence confirmed by dinocyst stratigraphy), is related to precession. Within the lower part of the PETM, proxy records indicate enhanced weathering, runoff, anoxia, and productivity along with sea level rise. On the basis of total organic carbon content and variations in sediment accumulation rates, excess organic carbon burial in the Arctic Ocean appears to have contributed significantly to the sequestration of injected carbon during the PETM.
Resumo:
Carbon dioxide and light are two major prerequisites of photosynthesis. Rising CO2 levels in oceanic surface waters in combination with ample light supply are therefore often considered stimulatory to marine primary production. Here we show that the combination of an increase in both CO2 and light exposure negatively impacts photosynthesis and growth of marine primary producers. When exposed to CO2 concentrations projected for the end of this century, natural phytoplankton assemblages of the South China Sea responded with decreased primary production and increased light stress at light intensities representative of the upper surface layer. The phytoplankton community shifted away from diatoms, the dominant phytoplankton group during our field campaigns. To examine the underlying mechanisms of the observed responses, we grew diatoms at different CO2 concentrations and under varying levels (5-100%) of solar radiation experienced by the phytoplankton at different depths of the euphotic zone. Above 22-36% of incident surface irradiance, growth rates in the high-CO2-grown cells were inversely related to light levels and exhibited reduced thresholds at which light becomes inhibitory. Future shoaling of upper-mixed-layer depths will expose phytoplankton to increased mean light intensities. In combination with rising CO2 levels, this may cause a widespread decline in marine primary production and a community shift away from diatoms, the main algal group that supports higher trophic levels and carbon export in the ocean.
Resumo:
Floating plastic debris sampled in surface waters of northwestern Mediterranean Sea during summer 2013. Geographical coordinates and dates of sampling are available in the dataset.
Resumo:
Marine free-living nematode communities were studied at similar depths (~500m) at two sides of the Antarctic Peninsula, characterised by different environmental and oceanographic conditions. At the Weddell Sea side, benthic communities are influenced by cold deep-water formation and seasonal sea-ice conditions, whereas the Drake Passage side experiences milder oceanic conditions and strong dynamics of the Antarctic Circumpolar Current. Surface primary productivity contrasted with observed benthic pigment patterns and varied according to the area studied: chlorophyll a concentrations (as a proxy for primary production) were high in the Weddell Sea sediments, but low in the surface waters above; this pattern was reversed in the Drake Passage. Differences between areas were largely mirrored by the nematode communities: nematode densities peaked in Weddell stations and showed deeper vertical occurrence in the sediment, associated with deeper penetration of chlorophyll a. Generic composition did not differ markedly between both areas, but rather showed distinct community shifts with depth in the sediment.
Resumo:
Dissolved organic matter (DOM) was isolated with XAD-2 and 4 resins from different water masses of the Greenland Sea and Fram Strait. The contribution of XAD-extractable dissolved organic carbon (DOC), operationally defined as 'recalcitrant' or humic substances, to total DOC was in the range of 45 ± 9% in surface waters and 60 ± 6% in deep waters. The carbohydrate concentration and composition were determined using the l-tryptophan/sulfuric acid method (for the bulk carbohydrate concentration, TCHO) and high performance anion-exchange chromatography after sulfuric acid hydrolysis (for the distribution of total hydrolysable neutral sugars, THNS). Carbohydrates contributed up to 6.8% to both total and recalcitrant DOC. TCHO contribution to total DOC decreased with depth from on average 4.1 ± 1.2% in surface waters to 2.2 ± 1.0% in deep waters, whereas the THNS contribution was similar in both layers, accounting for 2.5 ± 1.6% (surface) and 2.4 ± 0.2% (at depth). TCHO contribution to XAD-extractable DOC also decreased with depth from 4.5 ± 1.7% to 2.1 ± 1.0%, whereas THNS contribution was almost constant, with yields of 0.5 ± 0.3% for surface samples and 0.6 ± 0.1% at depth. The molecular size distribution of the recalcitrant DOM showed for all fractions a clear trend towards small molecules in the deep sea. More than half of the XAD-extractable carbohydrates of surface samples and more than 70% of deep sea samples were found in the nonpolar fraction from XAD, which was eluted with methanol. Glucose was the dominant carbohydrate in the surface water samples, whereas in the deep sea the composition was more uniform. In the XAD extracts, the compositions were less variable than in the original samples. The neutral sugar composition, in particular glucose and the deoxysugars, is indicative of the diagenetic state of the extracted DOM. The molar ratio (fucose + rhamnose)/(arabinose + xylose) was lowest for deep sea extractable DOM, indicating a high contribution of material modified by microorganisms. The THNS composition and distribution reveal that "recalcitrant" carbohydrates are heteropolysaccharides, carbohydrate units incorporated into a framework of a highly nonpolar structure with a lack of functional groups.
Resumo:
The speciation of dissolved zinc (Zn) was investigated by voltammetry in the Atlantic sector of the Southern Ocean along two transects across the major frontal systems: along the Zero Meridian and across the Drake Passage. In the Southern Ocean south of the APF we found detectable labile inorganic Zn throughout the surface waters in contrast to studies from lower latitudes. Using a combination of ASV titrations and pseudopolarography revealed the presence of significant concentration of electrochemically inert Zn ligands throughout the Southern Ocean. These ligands however were nearly always saturated due to the presence of excess concentrations of dissolved Zn that were associated with the high nutrient waters south of the Antarctic Polar Front (APF). Only in surface waters did the concentration of Zn complexing ligands exceed the dissolved Zn concentrations suggesting a biological source for these ligands. Our findings have clear implications for the biogeochemical cycling of Zn and for the interpretation of paleo records utilizing Zn in opal as a tracer of Zn speciation in the water column.
Resumo:
On the basis of various lithological, mircopaleontological and isotopic proxy records covering the last 30,000 calendar years (cal kyr) the paleoenvironmental evolution of the deep and surface water circulation in the subarctic Nordic seas was reconstructed for a climate interval characterized by intensive ice-sheet growth and subsequent decay on the surrounding land masses. The data reveal considerable temporal changes in the type of thermohaline circulation. Open-water convection prevailed in the early record, providing moisture for the Fennoscandian-Barents ice sheets to grow until they reached the shelf break at ~26 cal. kyr and started to deliver high amounts of ice-rafted debris (IRD) into the ocean via melting icebergs. Low epibenthic delta18O values and small-sized subpolar foraminifera observed after 26 cal. kyr may implicate that advection of Atlantic water into the Nordic seas occurred at the subsurface until 15 cal. kyr. Although modern-like surface and deep-water conditions first developed at ~13.5 cal. kyr, thermohaline circulation remained unstable, switching between a subsurface and surface advection of Atlantic water until 10 cal. kyr when IRD deposition and major input of meltwater ceased. During this time, two depletions in epibenthic delta13C are recognized just before and after the Younger Dryas indicating a notable reduction in convectional processes. Despite an intermittent cooling at ~8 cal. kyr, warmest surface conditions existed in the central Nordic seas between 10 and 6 cal. kyr. However, already after 7 cal. kyr the present day situation gradually evolved, verified by a strong water mass exchange with the Arctic Ocean and an intensifying deep convection as well as surface temperature decrease in the central Nordic seas. This process led to the development of the modern distribution of water masses and associated oceanographic fronts after 5 cal. kyr and, eventually, to today's steep east-west surface temperature gradient. The time discrepancy between intensive vertical convection after 5 cal. kyr but warmest surface temperatures already between 10 and 6 cal. kyr strongly implicates that widespread postglacial surface warming in the Nordic seas was not directly linked to the rates in deep-water formation.
Resumo:
As part of the GEOTRACES Polarstern expedition ANT XXIV/3 (ZERO and DRAKE) we have measured the vertical distribution of 234Th on sections through the Antarctic Circumpolar Current along the zero meridian and in Drake Passage and on an EW section through the Weddell Sea. Steady state export fluxes of 234Th from the upper 100m, derived from the depletion of 234Th with respect to its parent 238U, ranged from 621±105 dpm/m**2/d to 1773±90 dpm/m**2/d. This 234Th flux was converted into an export flux of organic carbon ranging from 3.1-13.2 mmolC/m**2/d (2.1-9.0 mmolC/m**2/d) using POC/234Th ratio of bulk (respectively >50 µm) suspended particles at the export depth (100 m). Non-steady state fluxes assuming zero flux under ice cover were up to 23% higher. In addition, particulate and dissolved 234Th were measured underway in high resolution in the surface water with a semi-automated procedure. Particulate 234Th in surface waters is inversely correlated with light transmission and pCO2 and positively with fluorescence and optical backscatter and is interpreted as a proxy for algal biomass. High resolution underway mapping of particulate and dissolved 234Th in surface water shows clearly where trace elements are absorbed by plankton and where they are exported to depth. Quantitative determination of the export flux requires the full 234Th profile since surface depletion and export flux become decoupled through changes in wind mixed layer depth and in contribution to export from subsurface layers. In a zone of very low algal abundance (54-58 °S at the zero meridian), confirmed by satellite Chl-a data, the lowest carbon export of the ACC was observed, allowing Fe and Mn to maintain their highest surface concentrations (Klunder et al., this issue, Middag et al., this issue). An ice-edge bloom that had developed in Dec/Jan in the zone 60-65 °S as studied during the previous leg (Strass et al., in prep) had caused a high export flux at 64.5 °S when we visited the area two months later (Feb/March). The ice-edge bloom had then shifted south to 65-69 °S evident from uptake of CO2 and dissolved Fe, Mn and 234Th, without causing export yet. In this way, the parallel analysis of 234Th can help to explain the scavenging behaviour of other trace elements.
Resumo:
Recent studies have stressed the role of high latitude nutrient levels and productivity in controlling the carbon isotopic composition of the deep sea and the CO2 content of the atmosphere. We undertook a study of the chemical composition of the polar planktonic foraminifer Neogloboquadrina pachyderma (s., sinistral coiling) from 30 late Holocene samples and 49 down core records from the high-latitude North and South Atlantic Oceans to evaluate the history of sea surface chemical change from glacial to interglacial time. Stable isotopic analysis of coretop samples from the Atlantic, Pacific and Southern Oceans shows no significant correlation between the delta13C of N. pachyderma and either delta13C or PO4 in seawater. Conversely, Cd/Ca ratios in planktonic foraminifera are consistent with the PO4 content of surface waters. The level of maximum glaciation (18,000 yr B.P.), identified by CLIMAP and delta18O, was chosen for mapping. Isopleths of delta18O on N. pachyderma (s.) in the North Atlantic reveal a pattern largely influenced by sea surface temperature (S.S.T.) and generally support the S.S.T. reconstruction of CLIMAP. Differences between the two suggest significantly lower salinity in North Atlantic surface waters at high latitudes than in lower latitudes. Down core delta13C records of N. pachyderma confirm that low delta13C values occurred in the northeast Atlantic during the latest glacial maximum (Labeyrie and Duplessy, 1985, doi:10.1016/0031-0182(85)90069-0). However, a map of delta13C for the 18,000 yr B.P. level for a much larger region in the North Atlantic shows that minimum N. pachyderma delta13C occurred in temperate waters. N. pachyderma delta13C decreased toward the southwest, reaching a minimum of -1 per mil at 37°N. Despite the variability seen in delta13C records of N. pachyderma, none of our cores show significant temporal variability in Cd/Ca. From the combined Cd/Ca and delta13C data we can see no evidence for an upwelling gyre in the eastern North Atlantic during the latest glacial maximum, nor evidence that the southern and northern oceans had significantly different levels of preformed nutrients than today.
Resumo:
Mesoscale eddies play a major role in controlling ocean biogeochemistry. By impacting nutrient availability and water column ventilation, they are of critical importance for oceanic primary production. In the eastern tropical South Pacific Ocean off Peru, where a large and persistent oxygen-deficient zone is present, mesoscale processes have been reported to occur frequently. However, investigations into their biological activity are mostly based on model simulations, and direct measurements of carbon and dinitrogen (N2) fixation are scarce. We examined an open-ocean cyclonic eddy and two anticyclonic mode water eddies: a coastal one and an open-ocean one in the waters off Peru along a section at 16°S in austral summer 2012. Molecular data and bioassay incubations point towards a difference between the active diazotrophic communities present in the cyclonic eddy and the anticyclonic mode water eddies. In the cyclonic eddy, highest rates of N2 fixation were measured in surface waters but no N2 fixation signal was detected at intermediate water depths. In contrast, both anticyclonic mode water eddies showed pronounced maxima in N2 fixation below the euphotic zone as evidenced by rate measurements and geochemical data. N2 fixation and carbon (C) fixation were higher in the young coastal mode water eddy compared to the older offshore mode water eddy. A co-occurrence between N2 fixation and biogenic N2, an indicator for N loss, indicated a link between N loss and N2 fixation in the mode water eddies, which was not observed for the cyclonic eddy. The comparison of two consecutive surveys of the coastal mode water eddy in November 2012 and December 2012 also revealed a reduction in N2 and C fixation at intermediate depths along with a reduction in chlorophyll by half, mirroring an aging effect in this eddy. Our data indicate an important role for anticyclonic mode water eddies in stimulating N2 fixation and thus supplying N offshore.