893 resultados para stochastic volatility


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Access to healthcare is a major problem in which patients are deprived of receiving timely admission to healthcare. Poor access has resulted in significant but avoidable healthcare cost, poor quality of healthcare, and deterioration in the general public health. Advanced Access is a simple and direct approach to appointment scheduling in which the majority of a clinic's appointments slots are kept open in order to provide access for immediate or same day healthcare needs and therefore, alleviate the problem of poor access the healthcare. This research formulates a non-linear discrete stochastic mathematical model of the Advanced Access appointment scheduling policy. The model objective is to maximize the expected profit of the clinic subject to constraints on minimum access to healthcare provided. Patient behavior is characterized with probabilities for no-show, balking, and related patient choices. Structural properties of the model are analyzed to determine whether Advanced Access patient scheduling is feasible. To solve the complex combinatorial optimization problem, a heuristic that combines greedy construction algorithm and neighborhood improvement search was developed. The model and the heuristic were used to evaluate the Advanced Access patient appointment policy compared to existing policies. Trade-off between profit and access to healthcare are established, and parameter analysis of input parameters was performed. The trade-off curve is a characteristic curve and was observed to be concave. This implies that there exists an access level at which at which the clinic can be operated at optimal profit that can be realized. The results also show that, in many scenarios by switching from existing scheduling policy to Advanced Access policy clinics can improve access without any decrease in profit. Further, the success of Advanced Access policy in providing improved access and/or profit depends on the expected value of demand, variation in demand, and the ratio of demand for same day and advanced appointments. The contributions of the dissertation are a model of Advanced Access patient scheduling, a heuristic to solve the model, and the use of the model to understand the scheduling policy trade-offs which healthcare clinic managers must make. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most research on stock prices is based on the present value model or the more general consumption-based model. When applied to real economic data, both of them are found unable to account for both the stock price level and its volatility. Three essays here attempt to both build a more realistic model, and to check whether there is still room for bubbles in explaining fluctuations in stock prices. In the second chapter, several innovations are simultaneously incorporated into the traditional present value model in order to produce more accurate model-based fundamental prices. These innovations comprise replacing with broad dividends the more narrow traditional dividends that are more commonly used, a nonlinear artificial neural network (ANN) forecasting procedure for these broad dividends instead of the more common linear forecasting models for narrow traditional dividends, and a stochastic discount rate in place of the constant discount rate. Empirical results show that the model described above predicts fundamental prices better, compared with alternative models using linear forecasting process, narrow dividends, or a constant discount factor. Nonetheless, actual prices are still largely detached from fundamental prices. The bubblelike deviations are found to coincide with business cycles. The third chapter examines possible cointegration of stock prices with fundamentals and non-fundamentals. The output gap is introduced to form the nonfundamental part of stock prices. I use a trivariate Vector Autoregression (TVAR) model and a single equation model to run cointegration tests between these three variables. Neither of the cointegration tests shows strong evidence of explosive behavior in the DJIA and S&P 500 data. Then, I applied a sup augmented Dickey-Fuller test to check for the existence of periodically collapsing bubbles in stock prices. Such bubbles are found in S&P data during the late 1990s. Employing econometric tests from the third chapter, I continue in the fourth chapter to examine whether bubbles exist in stock prices of conventional economic sectors on the New York Stock Exchange. The ‘old economy’ as a whole is not found to have bubbles. But, periodically collapsing bubbles are found in Material and Telecommunication Services sectors, and the Real Estate industry group.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In their dialogue entitled - The Food Service Industry Environment: Market Volatility Analysis - by Alex F. De Noble, Assistant Professor of Management, San Diego State University and Michael D. Olsen, Associate Professor and Director, Division of Hotel, Restaurant & Institutional Management at Virginia Polytechnic Institute and State University, De Noble and Olson preface the discussion by saying: “Hospitality executives, as a whole, do not believe they exist in a volatile environment and spend little time or effort in assessing how current and future activity in the environment will affect their success or failure. The authors highlight potential differences that may exist between executives' perceptions and objective indicators of environmental volatility within the hospitality industry and suggest that executives change these perceptions by incorporating the assumption of a much more dynamic environment into their future strategic planning efforts. Objective, empirical evidence of the dynamic nature of the hospitality environment is presented and compared to several studies pertaining to environmental perceptions of the industry.” That weighty thesis statement presumes that hospitality executives/managers do not fully comprehend the environment in which they operate. The authors provide a contrast, which conventional wisdom would seem to support and satisfy. “Broadly speaking, the operating environment of an organization is represented by its task domain,” say the authors. “This task domain consists of such elements as a firm's customers, suppliers, competitors, and regulatory groups.” These are dynamic actors and the underpinnings of change, say the authors by way of citation. “The most difficult aspect for management in this regard tends to be the development of a proper definition of the environment of their particular firm. Being able to precisely define who the customers, competitors, suppliers, and regulatory groups are within the environment of the firm is no easy task, yet is imperative if proper planning is to occur,” De Noble and Olson further contribute to support their thesis statement. The article is bloated, and that’s not necessarily a bad thing, with tables both survey and empirically driven, to illustrate market volatility. One such table is the Bates and Eldredge outline; Table-6 in the article. “This comprehensive outline…should prove to be useful to most executives in expanding their perception of the environment of their firm,” say De Noble and Olson. “It is, however, only a suggested outline,” they advise. “…risk should be incorporated into every investment decision, especially in a volatile environment,” say the authors. De Noble and Olson close with an intriguing formula to gauge volatility in an environment.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most research on stock prices is based on the present value model or the more general consumption-based model. When applied to real economic data, both of them are found unable to account for both the stock price level and its volatility. Three essays here attempt to both build a more realistic model, and to check whether there is still room for bubbles in explaining fluctuations in stock prices. In the second chapter, several innovations are simultaneously incorporated into the traditional present value model in order to produce more accurate model-based fundamental prices. These innovations comprise replacing with broad dividends the more narrow traditional dividends that are more commonly used, a nonlinear artificial neural network (ANN) forecasting procedure for these broad dividends instead of the more common linear forecasting models for narrow traditional dividends, and a stochastic discount rate in place of the constant discount rate. Empirical results show that the model described above predicts fundamental prices better, compared with alternative models using linear forecasting process, narrow dividends, or a constant discount factor. Nonetheless, actual prices are still largely detached from fundamental prices. The bubble-like deviations are found to coincide with business cycles. The third chapter examines possible cointegration of stock prices with fundamentals and non-fundamentals. The output gap is introduced to form the non-fundamental part of stock prices. I use a trivariate Vector Autoregression (TVAR) model and a single equation model to run cointegration tests between these three variables. Neither of the cointegration tests shows strong evidence of explosive behavior in the DJIA and S&P 500 data. Then, I applied a sup augmented Dickey-Fuller test to check for the existence of periodically collapsing bubbles in stock prices. Such bubbles are found in S&P data during the late 1990s. Employing econometric tests from the third chapter, I continue in the fourth chapter to examine whether bubbles exist in stock prices of conventional economic sectors on the New York Stock Exchange. The ‘old economy’ as a whole is not found to have bubbles. But, periodically collapsing bubbles are found in Material and Telecommunication Services sectors, and the Real Estate industry group.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The population of naive T cells in the periphery is best described by determining both its T cell receptor diversity, or number of clonotypes, and the sizes of its clonal subsets. In this paper, we make use of a previously introduced mathematical model of naive T cell homeostasis, to study the fate and potential of naive T cell clonotypes in the periphery. This is achieved by the introduction of several new stochastic descriptors for a given naive T cell clonotype, such as its maximum clonal size, the time to reach this maximum, the number of proliferation events required to reach this maximum, the rate of contraction of the clonotype during its way to extinction, as well as the time to a given number of proliferation events. Our results show that two fates can be identified for the dynamics of the clonotype: extinction in the short-term if the clonotype experiences too hostile a peripheral environment, or establishment in the periphery in the long-term. In this second case the probability mass function for the maximum clonal size is bimodal, with one mode near one and the other mode far away from it. Our model also indicates that the fate of a recent thymic emigrant (RTE) during its journey in the periphery has a clear stochastic component, where the probability of extinction cannot be neglected, even in a friendly but competitive environment. On the other hand, a greater deterministic behaviour can be expected in the potential size of the clonotype seeded by the RTE in the long-term, once it escapes extinction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Peer reviewed

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article we investigate voter volatility and analyze the causes and motives of switching vote intentions. We test two main sets of variables linked to volatility in literature; political sophistication and ‘political (dis)satisfaction’. Results show that voters with low levels of political efficacy tend to switch more often, both within a campaign and between elections. In the analysis we differentiate between campaign volatility and inter-election volatility and by doing so show that the dynamics of a campaign have a profound impact on volatility. The campaign period is when the lowly sophisticated switch their vote intention. Those with higher levels of interest in politics have switched their intention before the campaign has started. The data for this analysis are from the three wave PartiRep Belgian Election Study (2009).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A landfill represents a complex and dynamically evolving structure that can be stochastically perturbed by exogenous factors. Both thermodynamic (equilibrium) and time varying (non-steady state) properties of a landfill are affected by spatially heterogenous and nonlinear subprocesses that combine with constraining initial and boundary conditions arising from the associated surroundings. While multiple approaches have been made to model landfill statistics by incorporating spatially dependent parameters on the one hand (data based approach) and continuum dynamical mass-balance equations on the other (equation based modelling), practically no attempt has been made to amalgamate these two approaches while also incorporating inherent stochastically induced fluctuations affecting the process overall. In this article, we will implement a minimalist scheme of modelling the time evolution of a realistic three dimensional landfill through a reaction-diffusion based approach, focusing on the coupled interactions of four key variables - solid mass density, hydrolysed mass density, acetogenic mass density and methanogenic mass density, that themselves are stochastically affected by fluctuations, coupled with diffusive relaxation of the individual densities, in ambient surroundings. Our results indicate that close to the linearly stable limit, the large time steady state properties, arising out of a series of complex coupled interactions between the stochastically driven variables, are scarcely affected by the biochemical growth-decay statistics. Our results clearly show that an equilibrium landfill structure is primarily determined by the solid and hydrolysed mass densities only rendering the other variables as statistically "irrelevant" in this (large time) asymptotic limit. The other major implication of incorporation of stochasticity in the landfill evolution dynamics is in the hugely reduced production times of the plants that are now approximately 20-30 years instead of the previous deterministic model predictions of 50 years and above. The predictions from this stochastic model are in conformity with available experimental observations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this dissertation, we develop a novel methodology for characterizing and simulating nonstationary, full-field, stochastic turbulent wind fields.

In this new method, nonstationarity is characterized and modeled via temporal coherence, which is quantified in the discrete frequency domain by probability distributions of the differences in phase between adjacent Fourier components.

The empirical distributions of the phase differences can also be extracted from measured data, and the resulting temporal coherence parameters can quantify the occurrence of nonstationarity in empirical wind data.

This dissertation (1) implements temporal coherence in a desktop turbulence simulator, (2) calibrates empirical temporal coherence models for four wind datasets, and (3) quantifies the increase in lifetime wind turbine loads caused by temporal coherence.

The four wind datasets were intentionally chosen from locations around the world so that they had significantly different ambient atmospheric conditions.

The prevalence of temporal coherence and its relationship to other standard wind parameters was modeled through empirical joint distributions (EJDs), which involved fitting marginal distributions and calculating correlations.

EJDs have the added benefit of being able to generate samples of wind parameters that reflect the characteristics of a particular site.

Lastly, to characterize the effect of temporal coherence on design loads, we created four models in the open-source wind turbine simulator FAST based on the \windpact turbines, fit response surfaces to them, and used the response surfaces to calculate lifetime turbine responses to wind fields simulated with and without temporal coherence.

The training data for the response surfaces was generated from exhaustive FAST simulations that were run on the high-performance computing (HPC) facilities at the National Renewable Energy Laboratory.

This process was repeated for wind field parameters drawn from the empirical distributions and for wind samples drawn using the recommended procedure in the wind turbine design standard \iec.

The effect of temporal coherence was calculated as a percent increase in the lifetime load over the base value with no temporal coherence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

I study the link between capital markets and sources of macroeconomic risk. In chapter 1 I show that expected inflation risk is priced in the cross section of stock returns even after controlling for cash flow growth and volatility risks. Motivated by this evidence I study a long run risk model with a built-in inflation non-neutrality channel that allows me to decompose the real stochastic discount factor into news about current and expected cash flow growth, news about expected inflation and news about volatility. The model can successfully price a broad menu of assets and provides a setting for analyzing cross sectional variation in expected inflation risk premium. For industries like retail and durable goods inflation risk can account for nearly a third of the overall risk premium while the energy industry and a broad commodity index act like inflation hedges. Nominal bonds are exposed to expected inflation risk and have inflation premiums that increase with bond maturity. The price of expected inflation risk was very high during the 70's and 80's, but has come down a lot since being very close to zero over the past decade. On average, the expected inflation price of risk is negative, consistent with the view that periods of high inflation represent a "bad" state of the world and are associated with low economic growth and poor stock market performance. In chapter 2 I look at the way capital markets react to predetermined macroeconomic announcements. I document significantly higher excess returns on the US stock market on macro release dates as compared to days when no macroeconomic news hit the market. Almost the entire equity premium since 1997 is being realized on days when macroeconomic news are released. At high frequency, there is a pattern of returns increasing in the hours prior to the pre-determined announcement time, peaking around the time of the announcement and dropping thereafter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

While molecular and cellular processes are often modeled as stochastic processes, such as Brownian motion, chemical reaction networks and gene regulatory networks, there are few attempts to program a molecular-scale process to physically implement stochastic processes. DNA has been used as a substrate for programming molecular interactions, but its applications are restricted to deterministic functions and unfavorable properties such as slow processing, thermal annealing, aqueous solvents and difficult readout limit them to proof-of-concept purposes. To date, whether there exists a molecular process that can be programmed to implement stochastic processes for practical applications remains unknown.

In this dissertation, a fully specified Resonance Energy Transfer (RET) network between chromophores is accurately fabricated via DNA self-assembly, and the exciton dynamics in the RET network physically implement a stochastic process, specifically a continuous-time Markov chain (CTMC), which has a direct mapping to the physical geometry of the chromophore network. Excited by a light source, a RET network generates random samples in the temporal domain in the form of fluorescence photons which can be detected by a photon detector. The intrinsic sampling distribution of a RET network is derived as a phase-type distribution configured by its CTMC model. The conclusion is that the exciton dynamics in a RET network implement a general and important class of stochastic processes that can be directly and accurately programmed and used for practical applications of photonics and optoelectronics. Different approaches to using RET networks exist with vast potential applications. As an entropy source that can directly generate samples from virtually arbitrary distributions, RET networks can benefit applications that rely on generating random samples such as 1) fluorescent taggants and 2) stochastic computing.

By using RET networks between chromophores to implement fluorescent taggants with temporally coded signatures, the taggant design is not constrained by resolvable dyes and has a significantly larger coding capacity than spectrally or lifetime coded fluorescent taggants. Meanwhile, the taggant detection process becomes highly efficient, and the Maximum Likelihood Estimation (MLE) based taggant identification guarantees high accuracy even with only a few hundred detected photons.

Meanwhile, RET-based sampling units (RSU) can be constructed to accelerate probabilistic algorithms for wide applications in machine learning and data analytics. Because probabilistic algorithms often rely on iteratively sampling from parameterized distributions, they can be inefficient in practice on the deterministic hardware traditional computers use, especially for high-dimensional and complex problems. As an efficient universal sampling unit, the proposed RSU can be integrated into a processor / GPU as specialized functional units or organized as a discrete accelerator to bring substantial speedups and power savings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Energy efficiency improvement has been a key objective of China’s long-term energy policy. In this paper, we derive single-factor technical energy efficiency (abbreviated as energy efficiency) in China from multi-factor efficiency estimated by means of a translog production function and a stochastic frontier model on the basis of panel data on 29 Chinese provinces over the period 2003–2011. We find that average energy efficiency has been increasing over the research period and that the provinces with the highest energy efficiency are at the east coast and the ones with the lowest in the west, with an intermediate corridor in between. In the analysis of the determinants of energy efficiency by means of a spatial Durbin error model both factors in the own province and in first-order neighboring provinces are considered. Per capita income in the own province has a positive effect. Furthermore, foreign direct investment and population density in the own province and in neighboring provinces have positive effects, whereas the share of state-owned enterprises in Gross Provincial Product in the own province and in neighboring provinces has negative effects. From the analysis it follows that inflow of foreign direct investment and reform of state-owned enterprises are important policy handles.