915 resultados para state-space methods
Resumo:
The standard method of quantum state tomography (QST) relies on the measurement of a set of noncommuting observables, realized in a series of independent experiments. Ancilla-assisted QST (AAQST) proposed by Nieuwenhuizen and co-workers Phys. Rev. Lett. 92, 120402 (2004)] greatly reduces the number of independent measurements by exploiting an ancilla register in a known initial state. In suitable conditions AAQST allows mapping out density matrix of an input register in a single experiment. Here we describe methods for explicit construction of AAQST experiments in multiqubit registers. We also report nuclear magnetic resonance studies on AAQST of (i) a two-qubit input register using a one-qubit ancilla in an isotropic liquid-state system and (ii) a three-qubit input register using a two-qubit ancilla register in a partially oriented system. The experimental results confirm the effectiveness of AAQST in such multiqubit registers.
Resumo:
State estimation is one of the most important functions in an energy control centre. An computationally efficient state estimator which is free from numerical instability/ill-conditioning is essential for security assessment of electric power grid. Whereas approaches to successfully overcome the numerical ill-conditioning issues have been proposed, an efficient algorithm for addressing the convergence issues in the presence of topological errors is yet to be evolved. Trust region (TR) methods have been successfully employed to overcome the divergence problem to certain extent. In this study, case studies are presented where the conventional algorithms including the existing TR methods would fail to converge. A linearised model-based TR method for successfully overcoming the convergence issues is proposed. On the computational front, unlike the existing TR methods for state estimation which employ quadratic models, the proposed linear model-based estimator is computationally efficient because the model minimiser can be computed in a single step. The model minimiser at each step is computed by minimising the linearised model in the presence of TR and measurement mismatch constraints. The infinity norm is used to define the geometry of the TR. Measurement mismatch constraints are employed to improve the accuracy. The proposed algorithm is compared with the quadratic model-based TR algorithm with case studies on the IEEE 30-bus system, 205-bus and 514-bus equivalent systems of part of Indian grid.
Resumo:
The equivalence of triangle-comparison-based pulse width modulation (TCPWM) and space vector based PWM (SVPWM) during linear modulation is well-known. This paper analyses triangle-comparison based PWM techniques (TCPWM) such as sine-triangle PWM (SPWM) and common-mode voltage injection PWM during overmodulation from a space vector point of view. The average voltage vector produced by TCPWM during overmodulation is studied in the stationary (a-b) reference frame. This is compared and contrasted with the average voltage vector corresponding to the well-known standard two-zone algorithm for space vector modulated inverters. It is shown that the two-zone overmodulation algorithm itself can be derived from the variation of average voltage vector with TCPWM. The average voltage vector is further studied in a synchronously revolving (d-q) reference frame. The RMS value of low-order voltage ripple can be estimated, and can be used to compare harmonic distortion due to different PWM methods during overmodulation. The measured values of the total harmonic distortion (THD) in the line currents are presented at various fundamental frequencies. The relative values of measured current THD pertaining to different PWM methods tally with those of analytically evaluated RMS voltage ripple.
Resumo:
Space shift keying (SSK) is a special case of spatial modulation (SM), which is a relatively new modulation technique that is getting recognized to be attractive in multi-antenna communications. Our new contribution in this paper is an analytical derivation of exact closed-form expression for the end-to-end bit error rate (BER) performance of SSK in decode-and-forward (1)1,) cooperative relaying. An incremental relaying (IR) scheme with selection combining (SC) at the destination is considered. In SSK, since the information is carried by the transmit antenna index, traditional selection combining methods based on instantaneous SNRs can not be directly used. To overcome this problem, we propose to do selection between direct and relayed paths based on the Euclidean distance between columns of the channel matrix. With this selection metric, an exact analytical expression for the end-to-end BER is derived in closed-form. Analytical results are shown to match with simulation results.
Resumo:
Compressive Sensing theory combines the signal sampling and compression for sparse signals resulting in reduction in sampling rate and computational complexity of the measurement system. In recent years, many recovery algorithms were proposed to reconstruct the signal efficiently. Look Ahead OMP (LAOMP) is a recently proposed method which uses a look ahead strategy and performs significantly better than other greedy methods. In this paper, we propose a modification to the LAOMP algorithm to choose the look ahead parameter L adaptively, thus reducing the complexity of the algorithm, without compromising on the performance. The performance of the algorithm is evaluated through Monte Carlo simulations.
Resumo:
A review of high operating temperature (HOT) infrared (IR) photon detector technology vis-a-vis material requirements, device design and state of the art achieved is presented in this article. The HOT photon detector concept offers the promise of operation at temperatures above 120 K to near room temperature. Advantages are reduction in system size, weight, cost and increase in system reliability. A theoretical study of the thermal generation-recombination (g-r) processes such as Auger and defect related Shockley Read Hall (SRH) recombination responsible for increasing dark current in HgCdTe detectors is presented. Results of theoretical analysis are used to evaluate performance of long wavelength (LW) and mid wavelength (MW) IR detectors at high operating temperatures. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
In this article, we derive an a posteriori error estimator for various discontinuous Galerkin (DG) methods that are proposed in (Wang, Han and Cheng, SIAM J. Numer. Anal., 48: 708-733, 2010) for an elliptic obstacle problem. Using a key property of DG methods, we perform the analysis in a general framework. The error estimator we have obtained for DG methods is comparable with the estimator for the conforming Galerkin (CG) finite element method. In the analysis, we construct a non-linear smoothing function mapping DG finite element space to CG finite element space and use it as a key tool. The error estimator consists of a discrete Lagrange multiplier associated with the obstacle constraint. It is shown for non-over-penalized DG methods that the discrete Lagrange multiplier is uniformly stable on non-uniform meshes. Finally, numerical results demonstrating the performance of the error estimator are presented.
Resumo:
Energy research is to a large extent materials research, encompassing the physics and chemistry of materials, including their synthesis, processing toward components and design toward architectures, allowing for their functionality as energy devices, extending toward their operation parameters and environment, including also their degradation, limited life, ultimate failure and potential recycling. In all these stages, X-ray and electron spectroscopy are helpful methods for analysis, characterization and diagnostics for the engineer and for the researcher working in basic science.This paper gives a short overview of experiments with X-ray and electron spectroscopy for solar energy and water splitting materials and addresses also the issue of solar fuel, a relatively new topic in energy research. The featured systems are iron oxide and tungsten oxide as photoanodes, and hydrogenases as molecular systems. We present surface and subsurface studies with ambient pressure XPS and hard X-ray XPS, resonant photoemission, light induced effects in resonant photoemission experiments and a photo-electrochemical in situ/operando NEXAFS experiment in a liquid cell, and nuclear resonant vibrational spectroscopy (NRVS). (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The objective in this work is to develop downscaling methodologies to obtain a long time record of inundation extent at high spatial resolution based on the existing low spatial resolution results of the Global Inundation Extent from Multi-Satellites (GIEMS) dataset. In semiarid regions, high-spatial-resolution a priori information can be provided by visible and infrared observations from the Moderate Resolution Imaging Spectroradiometer (MODIS). The study concentrates on the Inner Niger Delta where MODIS-derived inundation extent has been estimated at a 500-m resolution. The space-time variability is first analyzed using a principal component analysis (PCA). This is particularly effective to understand the inundation variability, interpolate in time, or fill in missing values. Two innovative methods are developed (linear regression and matrix inversion) both based on the PCA representation. These GIEMS downscaling techniques have been calibrated using the 500-m MODIS data. The downscaled fields show the expected space-time behaviors from MODIS. A 20-yr dataset of the inundation extent at 500 m is derived from this analysis for the Inner Niger Delta. The methods are very general and may be applied to many basins and to other variables than inundation, provided enough a priori high-spatial-resolution information is available. The derived high-spatial-resolution dataset will be used in the framework of the Surface Water Ocean Topography (SWOT) mission to develop and test the instrument simulator as well as to select the calibration validation sites (with high space-time inundation variability). In addition, once SWOT observations are available, the downscaled methodology will be calibrated on them in order to downscale the GIEMS datasets and to extend the SWOT benefits back in time to 1993.
Resumo:
Diketopyrrolopyrrole (DPP) based molecular semiconductors have emerged as promising materials for high performance active layers in organic solar cells. It is imperative to comprehend the origin of such a property by investigating the fundamental structure property correlation. In this report we have investigated the role of the donor group in DPP based donor-acceptor- donor (D-A-D) structure to govern the solid state, photophysical and electrochemical properties. We have prepared three derivatives of DPP with varying strengths of the donor groups, such as phenyl (PDPP-Hex), thiophene (TDPP-Hex) and selenophene (SeDPP-Hex). The influence of the donor units on the solid state packing was studied by single crystal X-ray diffraction. The photophysical, electrochemical and density functional theory ( DFT) results were combined to elucidate the structural and electronic properties of three DPP derivatives. We found that these DPP derivatives crystallized in the monoclinic space group P21/c and show herringbone packing in the crystal lattice. The derivatives exhibit weak p-p stacking interactions as two neighboring molecules slip away from each other with varied torsional angles at the donor units. The high torsional angle of 32 degrees ( PDPP-Hex) between the phenyl and lactam ring results in weak intramolecular interactions between the donor and acceptor, while TDPP-Hex and SeDPP-Hex show lower torsional angles of 9 degrees and 12 degrees with a strong overlap between the donor and acceptor units. The photophysical properties reveal that PDPP-Hex exhibits a high Stokes shift of 0.32 eV and SeDPP- Hex shows a high molar absorption co-efficient of 33 600 L mol -1 1 cm -1 1 with a low band gap of similar to 2.2 eV. The electrochemical studies of SeDPP- Hex indicate the pronounced effect of selenium in stabilizing the LUMO energy levels and this further emphasizes the importance of chalcogens in developing new n-type organic semiconductors for optoelectronic devices.
Resumo:
In this article, we analyse several discontinuous Galerkin (DG) methods for the Stokes problem under minimal regularity on the solution. We assume that the velocity u belongs to H-0(1)(Omega)](d) and the pressure p is an element of L-0(2)(Omega). First, we analyse standard DG methods assuming that the right-hand side f belongs to H-1(Omega) boolean AND L-1(Omega)](d). A DG method that is well defined for f belonging to H-1(Omega)](d) is then investigated. The methods under study include stabilized DG methods using equal-order spaces and inf-sup stable ones where the pressure space is one polynomial degree less than the velocity space.
Resumo:
Novel switching sequences have been proposed recently for a neutral-point-clamped three-level inverter, controlled effectively as an equivalent two-level inverter. It is shown that the four novel sequences can be grouped into two pairs of sequences. Using each pair of sequences, a hybrid pulsewidth modulation (PWM) technique is proposed, which deploys the two sequences in appropriate spatial regions to reduce the current ripple. Further, a third hybrid PWM technique is proposed which uses all the five sequences (including the conventional sequence) in appropriate spatial regions. Each proposed hybrid PWM is shown, both analytically and experimentally, to outperform its constituent PWM methods in terms of harmonic distortion. In particular, the third proposed hybrid PWM reduces the total harmonic distortion considerably at low- and high-speed ranges of a constant volts-per-hertz induction motor drive, compared to centered space vector PWM.
Resumo:
Engineering the position of the lowest triplet state (T-1) relative to the first excited singlet state (S-1) is of great importance in improving the efficiencies of organic light emitting diodes and organic photovoltaic cells. We have carried out model exact calculations of substituted polyene chains to understand the factors that affect the energy gap between S-1 and T-1. The factors studied are backbone dimerisation, different donor-acceptor substitutions, and twisted geometry. The largest system studied is an 18 carbon polyene which spans a Hilbert space of about 991 x 10(6). We show that for reverse intersystem crossing process, the best system involves substituting all carbon sites on one half of the polyene with donors and the other half with acceptors. (C) 2014 AIP Publishing LLC.
Resumo:
Infinite arrays of coupled two-state stochastic oscillators exhibit well-defined steady states. We study the fluctuations that occur when the number N of oscillators in the array is finite. We choose a particular form of global coupling that in the infinite array leads to a pitchfork bifurcation from a monostable to a bistable steady state, the latter with two equally probable stationary states. The control parameter for this bifurcation is the coupling strength. In finite arrays these states become metastable: The fluctuations lead to distributions around the most probable states, with one maximum in the monostable regime and two maxima in the bistable regime. In the latter regime, the fluctuations lead to transitions between the two peak regions of the distribution. Also, we find that the fluctuations break the symmetry in the bimodal regime, that is, one metastable state becomes more probable than the other, increasingly so with increasing array size. To arrive at these results, we start from microscopic dynamical evolution equations from which we derive a Langevin equation that exhibits an interesting multiplicative noise structure. We also present a master equation description of the dynamics. Both of these equations lead to the same Fokker-Planck equation, the master equation via a 1/N expansion and the Langevin equation via standard methods of Ito calculus for multiplicative noise. From the Fokker-Planck equation we obtain an effective potential that reflects the transition from the monomodal to the bimodal distribution as a function of a control parameter. We present a variety of numerical and analytic results that illustrate the strong effects of the fluctuations. We also show that the limits N -> infinity and t -> infinity(t is the time) do not commute. In fact, the two orders of implementation lead to drastically different results.
Resumo:
Knowledge of the plasticity associated with the incipient stage of chip formation is useful toward developing an understanding of the deformation field underlying severe plastic deformation processes. The transition from a transient state of straining to a steady state was investigated in plane strain machining of a model material system-copper. Characterization of the evolution to a steady-state deformation field was made by image correlation, hardness mapping, load analysis, and microstructure characterization. Empirical relationships relating the deformation heterogeneity and the process parameters were found and explained by the corresponding effects on shear plane geometry. The results are potentially useful to facilitate a framework for process design of large strain deformation configurations, wherein transient deformation fields prevail. These implications are considered in the present study to quantify the efficiency of processing methods for bulk ultrafine-grained metals by large strain extrusion machining and equal channel angular pressing.