883 resultados para spatiotemporal epidemic prediction model
Resumo:
Motivation: The immunogenicity of peptides depends on their ability to bind to MHC molecules. MHC binding affinity prediction methods can save significant amounts of experimental work. The class II MHC binding site is open at both ends, making epitope prediction difficult because of the multiple binding ability of long peptides. Results: An iterative self-consistent partial least squares (PLS)-based additive method was applied to a set of 66 pep- tides no longer than 16 amino acids, binding to DRB1*0401. A regression equation containing the quantitative contributions of the amino acids at each of the nine positions was generated. Its predictability was tested using two external test sets which gave r pred =0.593 and r pred=0.655, respectively. Furthermore, it was benchmarked using 25 known T-cell epitopes restricted by DRB1*0401 and we compared our results with four other online predictive methods. The additive method showed the best result finding 24 of the 25 T-cell epitopes. Availability: Peptides used in the study are available from http://www.jenner.ac.uk/JenPep. The PLS method is available commercially in the SYBYL molecular modelling software package. The final model for affinity prediction of peptides binding to DRB1*0401 molecule is available at http://www.jenner.ac.uk/MHCPred. Models developed for DRB1*0101 and DRB1*0701 also are available in MHC- Pred
Resumo:
This paper focuses on the development of methods and cascade of models for flood monitoring and forecasting and its implementation in Grid environment. The processing of satellite data for flood extent mapping is done using neural networks. For flood forecasting we use cascade of models: regional numerical weather prediction (NWP) model, hydrological model and hydraulic model. Implementation of developed methods and models in the Grid infrastructure and related projects are discussed.
Resumo:
The link between off-target anticholinergic effects of medications and acute cognitive impairment in older adults requires urgent investigation. We aimed to determine whether a relevant in vitro model may aid the identification of anticholinergic responses to drugs and the prediction of anticholinergic risk during polypharmacy. In this preliminary study we employed a co-culture of human-derived neurons and astrocytes (NT2.N/A) derived from the NT2 cell line. NT2.N/A cells possess much of the functionality of mature neurons and astrocytes, key cholinergic phenotypic markers and muscarinic acetylcholine receptors (mAChRs). The cholinergic response of NT2 astrocytes to the mAChR agonist oxotremorine was examined using the fluorescent dye fluo-4 to quantitate increases in intracellular calcium [Ca2+]i. Inhibition of this response by drugs classified as severe (dicycloverine, amitriptyline), moderate (cyclobenzaprine) and possible (cimetidine) on the Anticholinergic Cognitive Burden (ACB) scale, was examined after exposure to individual and pairs of compounds. Individually, dicycloverine had the most significant effect regarding inhibition of the astrocytic cholinergic response to oxotremorine, followed by amitriptyline then cyclobenzaprine and cimetidine, in agreement with the ACB scale. In combination, dicycloverine with cyclobenzaprine had the most significant effect, followed by dicycloverine with amitriptyline. The order of potency of the drugs in combination frequently disagreed with predicted ACB scores derived from summation of the individual drug scores, suggesting current scales may underestimate the effect of polypharmacy. Overall, this NT2.N/A model may be appropriate for further investigation of adverse anticholinergic effects of multiple medications, in order to inform clinical choices of suitable drug use in the elderly.
Resumo:
Abstract A new LIBS quantitative analysis method based on analytical line adaptive selection and Relevance Vector Machine (RVM) regression model is proposed. First, a scheme of adaptively selecting analytical line is put forward in order to overcome the drawback of high dependency on a priori knowledge. The candidate analytical lines are automatically selected based on the built-in characteristics of spectral lines, such as spectral intensity, wavelength and width at half height. The analytical lines which will be used as input variables of regression model are determined adaptively according to the samples for both training and testing. Second, an LIBS quantitative analysis method based on RVM is presented. The intensities of analytical lines and the elemental concentrations of certified standard samples are used to train the RVM regression model. The predicted elemental concentration analysis results will be given with a form of confidence interval of probabilistic distribution, which is helpful for evaluating the uncertainness contained in the measured spectra. Chromium concentration analysis experiments of 23 certified standard high-alloy steel samples have been carried out. The multiple correlation coefficient of the prediction was up to 98.85%, and the average relative error of the prediction was 4.01%. The experiment results showed that the proposed LIBS quantitative analysis method achieved better prediction accuracy and better modeling robustness compared with the methods based on partial least squares regression, artificial neural network and standard support vector machine.
Resumo:
Since wind at the earth's surface has an intrinsically complex and stochastic nature, accurate wind power forecasts are necessary for the safe and economic use of wind energy. In this paper, we investigated a combination of numeric and probabilistic models: a Gaussian process (GP) combined with a numerical weather prediction (NWP) model was applied to wind-power forecasting up to one day ahead. First, the wind-speed data from NWP was corrected by a GP, then, as there is always a defined limit on power generated in a wind turbine due to the turbine controlling strategy, wind power forecasts were realized by modeling the relationship between the corrected wind speed and power output using a censored GP. To validate the proposed approach, three real-world datasets were used for model training and testing. The empirical results were compared with several classical wind forecast models, and based on the mean absolute error (MAE), the proposed model provides around 9% to 14% improvement in forecasting accuracy compared to an artificial neural network (ANN) model, and nearly 17% improvement on a third dataset which is from a newly-built wind farm for which there is a limited amount of training data. © 2013 IEEE.
Resumo:
In the teletraffic engineering of all the telecommunication networks, parameters characterizing the terminal traffic are used. One of the most important of them is the probability of finding the called (B-terminal) busy. This parameter is studied in some of the first and last papers in Teletraffic Theory. We propose a solution in this topic in the case of (virtual) channel systems, such as PSTN and GSM. We propose a detailed conceptual traffic model and, based on it, an analytical macro-state model of the system in stationary state, with: Bernoulli– Poisson–Pascal input flow; repeated calls; limited number of homogeneous terminals; losses due to abandoned and interrupted dialling, blocked and interrupted switching, not available intent terminal, blocked and abandoned ringing and abandoned conversation. Proposed in this paper approach may help in determination of many network traffic characteristics at session level, in performance evaluation of the next generation mobile networks.
Resumo:
Allergy is an overreaction by the immune system to a previously encountered, ordinarily harmless substance - typically proteins - resulting in skin rash, swelling of mucous membranes, sneezing or wheezing, or other abnormal conditions. The use of modified proteins is increasingly widespread: their presence in food, commercial products, such as washing powder, and medical therapeutics and diagnostics, makes predicting and identifying potential allergens a crucial societal issue. The prediction of allergens has been explored widely using bioinformatics, with many tools being developed in the last decade; many of these are freely available online. Here, we report a set of novel models for allergen prediction utilizing amino acid E-descriptors, auto- and cross-covariance transformation, and several machine learning methods for classification, including logistic regression (LR), decision tree (DT), naïve Bayes (NB), random forest (RF), multilayer perceptron (MLP) and k nearest neighbours (kNN). The best performing method was kNN with 85.3% accuracy at 5-fold cross-validation. The resulting model has been implemented in a revised version of the AllerTOP server (http://www.ddg-pharmfac.net/AllerTOP). © Springer-Verlag 2014.
Resumo:
A generalized Drucker–Prager (GD–P) viscoplastic yield surface model was developed and validated for asphalt concrete. The GD–P model was formulated based on fabric tensor modified stresses to consider the material inherent anisotropy. A smooth and convex octahedral yield surface function was developed in the GD–P model to characterize the full range of the internal friction angles from 0° to 90°. In contrast, the existing Extended Drucker–Prager (ED–P) was demonstrated to be applicable only for a material that has an internal friction angle less than 22°. Laboratory tests were performed to evaluate the anisotropic effect and to validate the GD–P model. Results indicated that (1) the yield stresses of an isotropic yield surface model are greater in compression and less in extension than that of an anisotropic model, which can result in an under-prediction of the viscoplastic deformation; and (2) the yield stresses predicted by the GD–P model matched well with the experimental results of the octahedral shear strength tests at different normal and confining stresses. By contrast, the ED–P model over-predicted the octahedral yield stresses, which can lead to an under-prediction of the permanent deformation. In summary, the rutting depth of an asphalt pavement would be underestimated without considering anisotropy and convexity of the yield surface for asphalt concrete. The proposed GD–P model was demonstrated to be capable of overcoming these limitations of the existing yield surface models for the asphalt concrete.
Resumo:
Abstract Phonological tasks are highly predictive of reading development but their complexity obscures the underlying mechanisms driving this association. There are three key components hypothesised to drive the relationship between phonological tasks and reading; (a) the linguistic nature of the stimuli, (b) the phonological complexity of the stimuli, and (c) the production of a verbal response. We isolated the contribution of the stimulus and response components separately through the creation of latent variables to represent specially designed tasks that were matched for procedure. These tasks were administered to 570 6 to 7-year-old children along with standardised tests of regular word and non-word reading. A structural equation model, where tasks were grouped according to stimulus, revealed that the linguistic nature and the phonological complexity of the stimulus predicted unique variance in decoding, over and above matched comparison tasks without these components. An alternative model, grouped according to response mode, showed that the production of a verbal response was a unique predictor of decoding beyond matched tasks without a verbal response. In summary, we found that multiple factors contributed to reading development, supporting multivariate models over those that prioritize single factors. More broadly, we demonstrate the value of combining matched task designs with latent variable modelling to deconstruct the components of complex tasks.
Resumo:
Long-lived light bullets fully localized in both space and time can be generated in novel photonic media such as multicore optical fiber or waveguide arrays. In this paper we present detailed theoretical analysis on the existence and stability of the discrete-continuous light bullets using a very generic model that occurs in a number of applications.
Resumo:
Data fluctuation in multiple measurements of Laser Induced Breakdown Spectroscopy (LIBS) greatly affects the accuracy of quantitative analysis. A new LIBS quantitative analysis method based on the Robust Least Squares Support Vector Machine (RLS-SVM) regression model is proposed. The usual way to enhance the analysis accuracy is to improve the quality and consistency of the emission signal, such as by averaging the spectral signals or spectrum standardization over a number of laser shots. The proposed method focuses more on how to enhance the robustness of the quantitative analysis regression model. The proposed RLS-SVM regression model originates from the Weighted Least Squares Support Vector Machine (WLS-SVM) but has an improved segmented weighting function and residual error calculation according to the statistical distribution of measured spectral data. Through the improved segmented weighting function, the information on the spectral data in the normal distribution will be retained in the regression model while the information on the outliers will be restrained or removed. Copper elemental concentration analysis experiments of 16 certified standard brass samples were carried out. The average value of relative standard deviation obtained from the RLS-SVM model was 3.06% and the root mean square error was 1.537%. The experimental results showed that the proposed method achieved better prediction accuracy and better modeling robustness compared with the quantitative analysis methods based on Partial Least Squares (PLS) regression, standard Support Vector Machine (SVM) and WLS-SVM. It was also demonstrated that the improved weighting function had better comprehensive performance in model robustness and convergence speed, compared with the four known weighting functions.
Resumo:
This paper investigates distortions and residual stresses induced in butt joint of thin plates using Metal Inert Gas welding. A moving distributed heat source model based on Goldak's double-ellipsoid heat flux distribution is implemented in Finite Element (FE) simulation of the welding process. Thermo-elastic-plastic FE methods are applied to modelling thermal and mechanical behaviour of the welded plate during the welding process. Prediction of temperature variations, fusion zone and heat affected zone as well as longitudinal and transverse shrinkage, angular distortion, and residual stress is obtained. FE analysis results of welding distortions are compared with existing experimental and empirical predictions. The welding speed and plate thickness are shown to have considerable effects on welding distortions and residual stresses. © 2009 Elsevier Ltd. All rights reserved.
Resumo:
2000 Mathematics Subject Classification: 62F15.