888 resultados para solicitor having financial interest in litigation funder
Resumo:
The finding that peptides containing -amino acid residues give rise to folding patterns hitherto unobserved in -amino acid peptides[1] has stimulated considerable interest in the conformational properties of peptides built from , and residues,[2] as the introduction of additional methylene (CH2) units into peptide chains provides further degrees of conformational freedom.
Resumo:
A detailed description of radiative interactions in laminar compressible boundary layers for moderate Mach numbers is presented by way of asymptotic analysis and supporting solutions. The radiation field is described by the differential approximation. While the asymptotic analysis is valid for large N (the ratio of photon mean free path to molecular mean free path) and arbitrary Boltzmann number, Bo (the ratio of convective heat flux to radiation heat flux), the solutions are obtained for Bo [double less-than sign] 1, the case of strong radiative interactions. The asymptotic analysis shows the existence of an optically thin boundary layer for large N and all Bo. For Bo [double less-than sign] 1, two outer regions are observed — one optically thin (at short distances from the leading edge) and the other optically thick (at large distances from the leading edge). An interesting feature not pointed out in the previous literature is the existence of a wall layer at large distances from the leading edge where convective heat flux can be ignored to the leading order of approximation. The radiation field in all cases can be very well approximated by a one-dimensional description. The solutions have been constructed using the ideas of matched asymptotic expansions by approximate analytical procedures and numerical methods. It is shown that, to the leading order of approximation, the radiation slip method yields exactly the same result as the more complicated matching procedure. Both the cases of linear and nonlinear radiation have been considered, the former being of interest in developing approximate methods which are subsequently generalized to handle the nonlinear problem. Detailed results are presented for both cases.
Resumo:
Acute respiratory failure (ARF) is the most common type of organ failure leading to the need for intensive care. It is often secondary to acute lung injury (ALI) and its more severe form, acute respiratory distress syndrome (ARDS). ARF, and especially ALI and ARDS, cause increased morbidity, and mortality rates remain high (up to 40%). These disorders are characterised by inflammatory reaction and tissue damage. In some cases, inflammation continues and leads to an overwhelming repair process with ongoing fibrosis, accompanied by organ dysfunction and eventually a loss of function. Measuring the magnitude of the inflammation, and the repair process, would theoretically offer information concerning outcome. Early identification of patients whose disease process is likely to proceed unfavourably, would help clinicians to optimise their treatment. The aim of this study was to evaluate the epidemiology of ARF, its treatment, and outcome in Finland, with special interest in biomarkers, and their value in the prediction of mortality. Altogether, 958 adult patients treated with ventilatory support were prospectively included in this study during an eight week period in 2007 in 25 intensive care units. Plasma aminoterminal pro-brain natriuretic peptide (NT-pro-BNP) was assessed in 602 patients, and plasma cell-free DNA in 580 patients, to evaluate their prognostic value in ARF. Markers of collagen metabolism were studied in longitudinal serum samples in 68 patients in order to evaluate their evolution in ARF and the association to multiple organ dysfunction (MOD). Ventilatory support was used in 39% of all ICU patients. The estimated incidence of ARF was 149.5/100 000 per year. Median tidal volumes used were higher than recommended. Overall mortality at 90 days was 31%. Plasma NT-pro-BNP and cell-free DNA were highly increased in the majority of patients. Both markers were independent predictors of 90-day mortality, but their discriminative power was at most moderate when used separately. The mortality was highest in those patients, in whom both biomarkers were over their separate cut-off values. Thus, combined use of these biomarkers may increase their clinical value in the mortality prediction. The markers of collagen metabolism changed significantly over time in surviving patients. None of these markers did associate with MOD in these patients.
Resumo:
Maurice Merleau-Ponty (1908-1961) has been known as the philosopher of painting. His interest in the theory of perception intertwined with the questions concerning the artist s perception, the experience of an artwork and the possible interpretations of the artwork. For him, aesthetics was not a sub-field of philosophy, and art was not simply a subject matter for the aesthetic experience, but a form of thinking. This study proposes an opening for a dialogue between Merleau-Pontian phenomenology and contemporary art. The thesis examines his phenomenology through certain works of contemporary art and presents readings of these artworks through his phenomenology. The thesis both shows the potentiality of a method, but also engages in the critical task of finding the possible limitations of his approach. The first part lays out the methodological and conceptual points of departure of Merleau-Ponty s phenomenological approach to perception as well as the features that determined his discussion on encountering art. Merleau-Ponty referred to the experience of perceiving art using the notion of seeing with (voir selon). He stressed a correlative reciprocity described in Eye and Mind (1961) as the switching of the roles of the visible and the painter. The choice of artworks is motivated by certain restrictions in the phenomenological readings of visual arts. The examined works include paintings by Tiina Mielonen, a photographic work by Christian Mayer, a film by Douglas Gordon and Philippe Parreno, and an installation by Monika Sosnowska. These works resonate with, and challenge, his phenomenological approach. The chapters with case studies take up different themes that are central to Merleau-Ponty s phenomenology: space, movement, time, and touch. All of the themes are interlinked with the examined artworks. There are also topics that reappear in the thesis, such as the notion of écart and the question of encountering the other. As Merleau-Ponty argued, the sphere of art has a particular capability to address our being in the world. The thesis presents an interpretation that emphasises the notion of écart, which refers to an experience of divergence or dispossession. The sudden dissociation, surprise or rupture that is needed in order for a meeting between the spectator and the artwork, or between two persons, to be possible. Further, the thesis suggests that through artworks it is possible to take into consideration the écart, the divergence, that defines our subjectivity.
Resumo:
There has been revival of interest in Jerky flow from the point of view of dynamical systems. The earliest attempt in this direction was from our group. One of the predictions of the theory is that Jerky flow could be chaotic. This has been recently verified by us. We have recently extended the earlier model to account for the spatial aspect as well. Both these models are in the form of coupled set of nonlinear differential equations and hence, they are complicated in their structure. For this reason we wish to devise a model based on the results of these two theories in the form of coupled lattice map for the description of the formation and propagation of dislocation bands. We report here one such model and its results.
Resumo:
Wave propagation in fluid?filled/submerged tubes is of interest in large HVAC ducts, and also in understanding and interpreting the experimental results obtained from fluid?filled impedance tubes. Based on the closed form analytical solution of the coupled wave equations, an eigenequation, which is the determinant of an 8×8 matrix, is derived and solved to obtain the axial wave number of the lowest?order longitudinal modes for cylindrical ducts of various diameter and wall thickness. The dispersion behavior of the wave motion is analyzed. It is observed that the larger the diameter of the duct and/or the smaller its wall thickness, the more flexible the impedance tube leading to more coupling between the waves in the elastic media. Also, it is shown that the wave motion in water?filled ducts submerged in water exhibits anomalous dispersion behavior. The axial attenuation characteristics of plane waves along water?filled tubes submerged in water or air are also investigated. Finally, investigations on the sound intensity level difference characteristics of the wall of the air?filled tubes are reported.
Resumo:
Interest in the applicability of fluctuation theorems to the thermodynamics of single molecules in external potentials has recently led to calculations of the work and total entropy distributions of Brownian oscillators in static and time-dependent electromagnetic fields. These calculations, which are based on solutions to a Smoluchowski equation, are not easily extended to a consideration of the other thermodynamic quantity of interest in such systems-the heat exchanges of the particle alone-because of the nonlinear dependence of the heat on a particle's stochastic trajectory. In this paper, we show that a path integral approach provides an exact expression for the distribution of the heat fluctuations of a charged Brownian oscillator in a static magnetic field. This approach is an extension of a similar path integral approach applied earlier by our group to the calculation of the heat distribution function of a trapped Brownian particle, which was found, in the limit of long times, to be consistent with experimental data on the thermal interactions of single micron-sized colloids in a viscous solvent.
Resumo:
Real gas effects dominate the hypersonic flow fields encountered by modem day hypersonic space vehicles. Measurement of aerodynamic data for the design applications of such aerospace vehicles calls for special kinds of wind tunnels capable of faithfully simulating real gas effects. A shock tunnel is an established facility commonly used along with special instrumentation for acquiring the data for this purpose within a short time period. The hypersonic shock tunnel (HST1), established at the Indian Institute of Science (IISc) in the early 1970s, has been extensively used to measure the aerodynamic data of various bodies of interest at hypersonic Mach numbers in the range 4 to 13. Details of some important measurements made during the period 1975-1995 along with the performance capabilities of the HST1 are presented in this review. In view of the re-emergence of interest in hypersonics across the globe in recent times, the present review highlights the Suitability of the hypersonic shock tunnel at the IISc for future space application studies in India.
Resumo:
A new formulation of the stability of boundary-layer flows in pressure gradients is presented, taking into account the spatial development of the flow and utilizing a special coordinate transformation. The formulation assumes that disturbance wavelength and eigenfunction vary downstream no more rapidly than the boundary-layer thickness, and includes all terms nominally of order R(-1) in the boundary-layer Reynolds number R. In Blasius flow, the present approach is consistent with that of Bertolotti et al. (1992) to O(R(-1)) but simpler (i.e. has fewer terms), and may best be seen as providing a parametric differential equation which can be solved without having to march in space. The computed neutral boundaries depend strongly on distance from the surface, but the one corresponding to the inner maximum of the streamwise velocity perturbation happens to be close to the parallel flow (Orr-Sommerfeld) boundary. For this quantity, solutions for the Falkner-Skan flows show the effects of spatial growth to be striking only in the presence of strong adverse pressure gradients. As a rational analysis to O(R(-1)) demands inclusion of higher-order corrections on the mean flow, an illustrative calculation of one such correction, due to the displacement effect of the boundary layer, is made, and shown to have a significant destabilizing influence on the stability boundary in strong adverse pressure gradients. The effect of non-parallelism on the growth of relatively high frequencies can be significant at low Reynolds numbers, but is marginal in other cases. As an extension of the present approach, a method of dealing with non-similar flows is also presented and illustrated. However, inherent in the transformation underlying the present approach is a lower-order non-parallel theory, which is obtained by dropping all terms of nominal order R(-1) except those required for obtaining the lowest-order solution in the critical and wall layers. It is shown that a reduced Orr-Sommerfeld equation (in transformed coordinates) already contains the major effects of non-parallelism.
Resumo:
The oscillating flow and temperature field in an open tube subjected to cryogenic temperature at the cold end and ambient temperature at the hot end is studied numerically. The flow is driven by a time-wise sinusoidally varying pressure at the cold end. The conjugate problem takes into account the interaction of oscillatory flow with the heat conduction in the tube wall. The full set of compressible flow equations with axisymmetry assumption are solved with a pressure correction algorithm. Parametric studies are conducted with frequencies of 5-15 Hz, with one end maintained at 100 K and other end at 300 K. The flow and temperature distributions and the cooldown characteristics are obtained. The frequency and pressure amplitude have negligible effect on the time averaged Nusselt number. Pressure amplitude is an important factor determining the enthalpy flow through the solid wall. The frequency of operation has considerable effect on penetration of temperature into the tube. The density variation has strong influence on property profiles during cooldown. The present study is expected to be of interest in applications such as pulse tube refrigerators and other cryocoolers, where oscillatory flows occur in open tubes. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Phase transformations of Al2O3 and Na2O · 6Al2O3 prepared by the gel route have been investigated for the first time by 27Al MAS NMR spectroscopy in combination with x-ray diffraction. Of particular interest in the study is the kinetics of the γ → α and γ → β transformations, respectively, in these two systems. Analysis of the kinetic data shows the important role of nucleation in both these transformations.
Resumo:
Localization of underwater acoustic sources is a problem of great interest in the area of ocean acoustics. There exist several algorithms for source localization based on array signal processing.It is of interest to know the theoretical performance limits of these estimators. In this paper we develop expressions for the Cramer-Rao-Bound (CRB) on the variance of direction-of-arrival(DOA) and range-depth estimators of underwater acoustic sources in a shallow range-independent ocean for the case of generalized Gaussian noise. We then study the performance of some of the popular source localization techniques,through simulations, for DOA/range-depth estimation of underwater acoustic sources in shallow ocean by comparing the variance of the estimators with the corresponding CRBs.
Resumo:
There is a large interest in biofuels in India as a substitute to petroleum-based fuels, with a purpose of enhancing energy security and promoting rural development. India has announced an ambitious target of substituting 20% of fossil fuel consumption by biodiesel and bioethanol by 2017. India has announced a national biofuel policy and launched a large program to promote biofuel production, particularly on wastelands: its implications need to be studied intensively considering the fact that India is a large developing country with high population density and large rural population depending upon land for their livelihood. Another factor is that Indian economy is experiencing high growth rate, which may lead to enhanced demand for food, livestock products, timber, paper, etc., with implications for land use. Studies have shown that area under agriculture and forest has nearly stabilized over the past 2-3 decades. This paper presents an assessment of the implications of projected large-scale biofuel production on land available for food production, water, biodiversity, rural development and GHG emissions. The assessment will be largely focused on first generation biofuel crops, since the Indian program is currently dominated by these crops. Technological and policy options required for promoting sustainable biofuel production will be discussed. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The activity coefficients of oxygen in copper-tin alloys at 1 1 00°C have been measured by two different equilibrium methodsthe cell Pt, Ni + NiO I ZrOz solid electrolyte I O[Cu + Sn], cermet. Pt and the equilibrium between Cu + Sn alloys and SnO + SiO, slags established via SnO vapour. The results from both types of measurement confirm the work of Block and co-workers and show that other data are in error. The deoxidation equilibria for Sn in liquid copper, with solid SnO, as deoxidation product, have been evaluated at temperatures of interest in copper smelting.
Resumo:
Abstract | A growing interest in the research of chalcogenide glasses can be currently witnessed, which to a large extent is caused by newly opened fields of applications for these materials. Applications in the field of micro- and opto-electronics, xerography and lithography, acousto-optic and memory switching devices and detectors for medical imaging seem to be most remarkable. Accordingly, photo induced phenomena in chalcogenide glasses are attracting much interest. These phenomena can be found both in uniform thin films as well as multilayered films. Among amorphous multilayers, chalcogenide multilayers are attractive because of the potential it has for tailoring the optical properties. I will be presenting some basic idea of photoinduced effects followed by the diffusion mechanisms of Se, Sb and Bi in to As2S3 films.