992 resultados para soil chemicophysical properties
Resumo:
Lead fluoroborate glasses were prepared by the melt-quenching technique and characterized in terms of (micro)structural and electrical properties. The study was conducted on as prepared as well as temperature- and/or electric field-treated glass samples. The results show that, in the as-prepared glassy-state materials, electrical conductivity improved with increasing the PbF(2) glass content. This result involves both an increase of the fluoride charge carrier density and, especially, a decrease of the activation energy from a glass structure expansion improving charge carrier mobility. Moreover, for the electric field-treated glass samples, surface crystallization was observed even below the glass transition temperature. As previously proposed in literature, and shown here, the occurrence of this phenomenon arose from an electrochemically induced redox reaction at the electrodes, followed by crystallite nucleation. Once nucleated, growth of beta-PbF(2) crystallites, with the indication of incorporating reduced lead ions (Pb(+)), was both (micro)structurally and electrically detectable and analyzed. The overall crystallization-associated features observed here adapt well with the floppy-rigid model that has been proposed to further complete the original continuous-random-network model by Zachariasen for closely addressing not only glasses' structure but also crystallization mechanism. Finally, the crystallization-modified kinetic picture of the glasses' electrical properties, through application of polarization/depolarization measurements originally combined with impedance spectroscopy, was extensively explored. (c) 2008 American Institute of Physics.
Resumo:
This work reports on the magnetic properties of Ge(100-x)Mn(x) (x=0-24 at. %) films prepared by cosputtering a Ge+Mn target and submitted to cumulative thermal annealing treatments up to 500 degrees C. Both as-deposited and annealed films were investigated by means of compositional analysis, Raman scattering spectroscopy, magnetic force microscopy, superconducting quantum interference device magnetometry, and electrical resistivity measurements. All as-deposited films (either pure or containing Mn) exhibit an amorphous structure, which changes to crystalline as the annealing treatments are performed at increasing temperatures. In fact, the magnetic properties of the present Ge(100-x)Mn(x) films are very sensitive to the Mn content and whether their atomic structure is amorphous or crystalline. More specifically: whereas the amorphous Ge(100-x)Mn(x) films (with high x) present a characteristic spin glass behavior at low temperature; after crystallization, the films (with moderate Mn contents) are ferromagnetic at room temperature. Moreover, the magnetic behavior of the films scales with their Mn concentration and tends to be more pronounced after crystallization. Finally, the semiconducting behavior of the films, experienced by previous optical studies, was confirmed through electrical measurements, which also indicate the dependence of the resistivity with the atomic composition of the films. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3520661]
Resumo:
We present an extensive study of the oxyborate material Co(5)Ti(O(2)BO(3))(2) using x-ray, magnetic, and thermodynamic measurements. This material belongs to a family of oxyborates known as ludwigites which presents low-dimensional subunits in the form of three leg ladders in its structure. Differently from previously investigated ludwigites the present material does not show long-range magnetic order although it goes into a spin-glass state at low temperatures. The different techniques employed in this paper allow for a characterization of the structure, the nature of the low-energy excitations and the magnetic anisotropy of this system. Its unique magnetic behavior is discussed and compared with those of other magnetic ludwigites.
Resumo:
In this work we performed a thorough spectroscopic and thermo-optical investigation of yttrium aluminoborate glasses doped with neodymium ions. A set of samples, prepared by the conventional melt-quenching technique and with Nd(2)O(3) concentrations varying from 0.1 to 0.75 mol %, were characterized by ground state absorption, photoluminescence, excited state lifetime measurements, and thermal lens technique. For the neodymium emission at 1064 nm ((4)F(3/2) -> (4)I(11/2) transition), no significant luminescence concentration quenching was observed and the experimental lifetime values ranged around 70 mu s. The obtained values of thermal conductivity and diffusivity of approximately 10.3 x 10(-3) W / cm K and 4.0 x 10(-3) cm(2) / s, respectively, are comparable to those of commercial laser glasses. Moreover, the fluorescence quantum efficiency of the glasses, calculated using the Judd-Ofelt formalism and luminescence decay, lies in the range from 0.28 to 0.32, larger than the typical values obtained for Nd(3+) doped YAl(3)(BO(3))(4) crystals. (c) 2009 American Institute of Physics. [DOI: 10.1063/1.3176503]
Resumo:
In this work the time resolved thermal lens method is combined with interferometric technique, the thermal relaxation calorimetry, photoluminescence and lifetime measurements to determine the thermo physical properties of Nd(2)O(3) doped sodium zincborate glass as a function of temperature up to the glass transition region. Thermal diffusivity, thermal conductivity, fluorescence quantum efficiency, linear thermal expansion coefficient and thermal coefficient of electronic polarizability were determined. In conclusion, the results showed the ability of thermal lens and interferometric methods to perform measurements very close to the phase transition region. These techniques provide absolute values for the measured physical quantities and are advantageous when low scan rates are required. (c) 2008 Optical Society of America
Resumo:
The temperature and compositional dependences of thermo- optical properties of neodymium doped yttrium aluminum garnet (YAG) crystals and fine grain ceramics have been systematically investigated by means of time- resolved thermal lens spectrometry. We have found that Nd:YAG ceramics show a reduced thermal diffusivity compared to Nd:YAG single crystals in the complete temperature range investigated (80-300 K). The analysis of the time- resolved luminescent properties of Nd(3+) has revealed that the reduction in the phonon mean free path taking place in Nd:YAG ceramics cannot be associated with an increment in the density of lattice defects, indicating that phonon scattering at grain boundaries is the origin of the observed reduction in the thermal diffusivity of Nd: YAG ceramics. Finally, our results showed the ability of the time- resolved thermal lens to determine and optimize the thermo- optical properties of Nd: YAG ceramic based lasers. (C) 2008 American Institute of Physics. [DOI: 10.1063/1.2975335]
Resumo:
In this paper we establish a method to obtain the stability of periodic travelling-wave solutions for equations of Korteweg-de Vries-type u(t) + u(p)u(x) - Mu(x) = 0, with M being a general pseudodifferential operator and where p >= 1 is an integer. Our approach uses the theory of totally positive operators, the Poisson summation theorem, and the theory of Jacobi elliptic functions. In particular we obtain the stability of a family of periodic travelling waves solutions for the Benjamin Ono equation. The present technique gives a new way to obtain the existence and stability of cnoidal and dnoidal waves solutions associated with the Korteweg-de Vries and modified Korteweg-de Vries equations, respectively. The theory has prospects for the study of periodic travelling-wave solutions of other partial differential equations.
Resumo:
We have systematically studied the magnetic properties of ferrite nanoparticles with 3, 7, and 11 nm of diameter with very narrow grain size distributions. Samples were prepared by the thermal decomposition of Fe (acac)(3) in the presence of surfactants giving nanoparticles covered by oleic acid. High resolution transmission electron microscopy (HRTEM) images and XRD diffraction patterns confirms that all samples are composed by crystalline nanoparticles with the spinel structure expected for the iron ferrite. ac and dc magnetization measurements, as well in-field Mossbauer spectroscopy, indicate that the magnetic properties of nanoparticles with 11 and 7 nm are close to those expected for a monodomain, presenting large M(S) (close to the magnetite bulk). Despite the crystalline structure observed in HRTEM images, the nanoparticles with 3 nm are composed by a magnetically ordered region (core) and a surface region that presents a different magnetic order and it contains about 66% of Fe atoms. The high saturation and irreversibility fields in the M(H) loops of the particles with 3 nm together with the misalignment at 120 kOe in the in-field Mossbauer spectrum of surface component indicate a high surface anisotropy for the surface atoms, which is not observed for the core. For T < 10 K, we observe an increase in the susceptibility and of the magnetization for former sample, indicating that surface moments tend to align with applied field increasing the magnetic core size. (C) 2010 American Institute of Physics. [doi:10.1063/1.3514585]
Resumo:
In this work is reported the sensitization effect by polymer matrices on the photoluminescence properties of diaquatris(thenoyltrifluoroacetonate)europium(III), [Eu(tta)(3)(H(2)O)(2)], doped into poly-beta-hydroxybutyrate (PHB) with doping percentage at 1, 3, 5, 7 and 10% (mass) in film form. TGA results indicated that the Eu(3+) complex precursor was immobilized in the polymer matrix by the interaction between the Eu(3+) complex and the oxygen atoms of the PHB polymer when the rare earth complex was incorporated in the polymeric host. The thermal behaviour of these luminescent systems is similar to that of the undoped polymer, however, the T(onset) temperature of decomposition decreases with increase of the complex doping concentration. The emission spectra of the Eu(3+) complex doped PHB films recorded at 298 K exhibited the five characteristic bands arising from the (5)D(0) -> (7)F(J) intraconfigurational transitions (J = 0-4). The fact that the quantum efficiencies eta of the doped film increased significantly revealed that the polymer matrix acts as an efficient co-sensitizer for Eu(3+) luminescent centres and therefore enhances the quantum efficiency of the emitter (5)D(0) level. The luminescence intensity decreases, however, with increasing precursor concentration in the doped polymer to greater than 5% where a saturation effect is observed at this specific doping percentage, indicating that changes in the polymeric matrix improve the absorption property of the film, consequently quenching the luminescent effect.
Resumo:
Agricultural management practices that promote net carbon (C) accumulation in the soil have been considered as an important potential mitigation option to combat global warming. The change in the sugarcane harvesting system, to one which incorporates C into the soil from crop residues, is the focus of this work. The main objective was to assess and discuss the changes in soil organic C stocks caused by the conversion of burnt to unburnt sugarcane harvesting systems in Brazil, when considering the main soils and climates associated with this crop. For this purpose, a dataset was obtained from a literature review of soils under sugarcane in Brazil. Although not necessarily from experimental studies, only paired comparisons were examined, and for each site the dominant soil type, topography and climate were similar. The results show a mean annual C accumulation rate of 1.5 Mg ha-1 year-1 for the surface to 30-cm depth (0.73 and 2.04 Mg ha-1 year-1 for sandy and clay soils, respectively) caused by the conversion from a burnt to an unburnt sugarcane harvesting system. The findings suggest that soil should be included in future studies related to life cycle assessment and C footprint of Brazilian sugarcane ethanol.
Resumo:
No-tillage mulch-based (NTM) cropping systems have been widely adopted by farmers in the Brazilian savanna region (Cerrado biome). We hypothesized that this new type of management should have a profound impact on soil organic carbon (SOC) at regional scale and consequently on climate change mitigation. The objective of this study was thus to quantify the SOC storage potential of NTM in the oxisols of the Cerrado using a synchronic approach that is based on a chronosequence of fields of different years under NTM. The study consisted of three phases: (1) a farm/cropping system survey to identify the main types of NTM systems to be chosen for the chronosequence; (2) a field survey to identify a homogeneous set of situations for the chronosequence and (3) the characterization of the chronosequence to assess the SOC storage potential. The main NTM system practiced by farmers is an annual succession of soybean (Glycine max)or maize (Zea mays) with another cereal crop. This cropping system covers 54% of the total cultivated area in the region. At the regional level, soil organic C concentrations from NTM fields were closely correlated with clay + silt content of the soil (r(2) = 0.64). No significant correlation was observed (r(2) = 0.07), however, between these two variables when we only considered the fields with a clay + silt content in the 500-700 g kg(-1) range. The final chronosequence of NTM fields was therefore based on a subsample of eight fields, within this textural range. The SOC stocks in the 0-30 cm topsoil layer of these selected fields varied between 4.2 and 6.7 kg C m(-2) and increased on average (r(2) = 0.97) with 0.19 kg C m(-2) year(-1). After 12 years of NTM management, SOC stocks were no longer significantly different from the stocks under natural Cerrado vegetation (p < 0.05), whereas a 23-year-old conventionally tilled and cropped field showed SOC stocks that were about 30% below this level. Confirming our hypotheses, this study clearly illustrated the high potential of NTM systems in increasing SOC storage under tropical conditions, and how a synchronic approach may be used to assess efficiently such modification on farmers` fields, identifying and excluding non desirable sources of heterogeneity (management, soils and climate). (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
To test whether plant species influence greenhouse gas production in diverse ecosystems, we measured wet season soil CO(2) and N(2)O fluxes close to similar to 300 large (>35 cm in diameter at breast height (DBH)) trees of 15 species at three clay-rich forest sites in central Amazonia. We found that soil CO(2) fluxes were 38% higher near large trees than at control sites >10 m away from any tree (P < 0.0001). After adjusting for large tree presence, a multiple linear regression of soil temperature, bulk density, and liana DBH explained 19% of remaining CO(2) flux variability. Soil N(2)O fluxes adjacent to Caryocar villosum, Lecythis lurida, Schefflera morototoni, and Manilkara huberi were 84%-196% greater than Erisma uncinatum and Vochysia maxima, both Vochysiaceae. Tree species identity was the most important explanatory factor for N(2)O fluxes, accounting for more than twice the N(2)O flux variability as all other factors combined. Two observations suggest a mechanism for this finding: (1) sugar addition increased N(2)O fluxes near C. villosum twice as much (P < 0.05) as near Vochysiaceae and (2) species mean N(2)O fluxes were strongly negatively correlated with tree growth rate (P = 0.002). These observations imply that through enhanced belowground carbon allocation liana and tree species can stimulate soil CO(2) and N(2)O fluxes (by enhancing denitrification when carbon limits microbial metabolism). Alternatively, low N(2)O fluxes potentially result from strong competition of tree species with microbes for nutrients. Species-specific patterns in CO(2) and N(2)O fluxes demonstrate that plant species can influence soil biogeochemical processes in a diverse tropical forest.
Resumo:
The Cerrado and Amazon regions of Brazil are probably the largest agricultural frontier of the world, and Could be a sink or source for C depending on the net effect of land use change and subsequent management on soil organic C pools. We evaluated the effects of agricultural management systems on soil organic C (SOC) stocks in the Brazilian states of Rondonia and Mato Grosso, and derived regional specific factors for soil C stock change associated with different management systems. We used 50 observations (data points) in this study, including 42 dealing with annual cropping practices and 8 dealing with perennial cropping, and analyzed the data in linear mixed-effect models. No tillage (NT) systems in Cerrado areas increased SOC Storage by 1.08 +/- 0.06 relative to SOC stocks under native conditions, while SOC storage increased by a modest factor of 1.01 +/- 0.17 in Cerradao and Amazon Forest conditions. Full tillage (FT) had negative effect on SOC storage relative to NT, decreasing SOC stocks by a factor of 0.94 +/- 0.04. but did not significantly reduce SOC stocks relative to native levels when adopted in the Cerrado region. Perennial cropping had a minimal impact on SOC stocks, estimated at a factor Value of 0.98 +/- 0.14, suggesting these systems maintain about 98% of the SOC stock found under native vegetation. The results Suggest that NT adoption may be increasing SOC with land use change from native vegetation to cropland management in the Cerrado region of Brazil. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Due to the worldwide increase in demand for biofuels, the area cultivated with sugarcane is expected to increase. For environmental and economic reasons, an increasing proportion of the areas are being harvested without burning, leaving the residues on the soil surface. This periodical input of residues affects soil physical, chemical and biological properties, as well as plant growth and nutrition. Modeling can be a useful tool in the study of the complex interactions between the climate, residue quality, and the biological factors controlling plant growth and residue decomposition. The approach taken in this work was to parameterize the CENTURY model for the sugarcane crop, to simulate the temporal dynamics of aboveground phytomass and litter decomposition, and to validate the model through field experiment data. When studying aboveground growth, burned and unburned harvest systems were compared, as well as the effect of mineral fertilizer and organic residue applications. The simulations were performed with data from experiments with different durations, from 12 months to 60 years, in Goiana, TimbaA(0)ba and Pradpolis, Brazil; Harwood, Mackay and Tully, Australia; and Mount Edgecombe, South Africa. The differentiation of two pools in the litter, with different decomposition rates, was found to be a relevant factor in the simulations made. Originally, the model had a basically unlimited layer of mulch directly available for decomposition, 5,000 g m(-2). Through a parameter optimization process, the thickness of the mulch layer closer to the soil, more vulnerable to decomposition, was set as 110 g m(-2). By changing the layer of mulch at any given time available for decomposition, the sugarcane residues decomposition simulations where close to measured values (R (2) = 0.93), contributing to making the CENTURY model a tool for the study of sugarcane litter decomposition patterns. The CENTURY model accurately simulated aboveground carbon stalk values (R (2) = 0.76), considering burned and unburned harvest systems, plots with and without nitrogen fertilizer and organic amendment applications, in different climates and soil conditions.
Resumo:
The effect of conversion from forest-to-pasture upon soil carbon stocks has been intensively discussed, but few studies focus on how this land-use change affects carbon (C) distribution across soil fractions in the Amazon basin. We investigated this in the 20 cm depth along a chronosequence of sites from native forest to three successively older pastures. We performed a physicochemical fractionation of bulk soil samples to better understand the mechanisms by which soil C is stabilized and evaluate the contribution of each C fraction to total soil C. Additionally, we used a two-pool model to estimate the mean residence time (MRT) for the slow and active pool C in each fraction. Soil C increased with conversion from forest-to-pasture in the particulate organic matter (> 250 mu m), microaggregate (53-250 mu m), and d-clay (< 2 mu m) fractions. The microaggregate comprised the highest soil C content after the conversion from forest-to-pasture. The C content of the d-silt fraction decreased with time since conversion to pasture. Forest-derived C remained in all fractions with the highest concentration in the finest fractions, with the largest proportion of forest-derived soil C associated with clay minerals. Results from this work indicate that microaggregate formation is sensitive to changes in management and might serve as an indicator for management-induced soil carbon changes, and the soil C changes in the fractions are dependent on soil texture.