908 resultados para soft proofing
Resumo:
Se presenta una relación entre las propiedades mecánicas de los tejidos fibrados y las características geométricas y mecánicas de los fibriles que lo forman a escala mesoscópica. In this work we derive a relationship between the mechanical and geometrical properties of the fibril constituents and the soft tissue material parameters at macroscopic scale.
Resumo:
Material properties of soft tissues are highly conditioned by the hierarchical structure of this kind of composites. These collagen-based tissues present a complex framework of fibres, fibrils, tropocollagen molecules and amino-acids. As the structural mechanisms that control the degradation of soft tissues are related with the behaviour of its fundamental constituents, the relationship between the molecular and intermolecular properties and the tissue behaviour needs to be studied.
Resumo:
Currently the Spanish universities are making a great effort to effectively incorporate the development and assessment of generic skills in their training programs. Information and communications technologies (ICT) offer a wide range of possibilities but create uncertainty among teachers about the process and results. It is considered of interest to conduct a study to analyze the extent to which social skills like commitment, communication and teamwork are acquired by students and teachers. It seeks to ascertain the influence of the learning context, online or classroom training, in the development of these personal skills among the participants in the sample. For this study two universities have been chosen, Universidad a Distancia de Madrid (UDIMA) offering online training environment, and Universidad Politécnica de Madrid (UPM) with classroom training modality. A total of 257 individuals, 230 students and 27 teachers have answered the survey called Evalsoft. This instrument was designed in the project with the same name by a research team from Universidad Complutense of Madrid (UCM). Some interesting conclusions can be highlighted: it is in the online context where there are higher levels of commitment and teamwork than in the classroom modality; teachers have higher social skills that students and these improve with age. Sex and the training program appear to influence these social skills.
Resumo:
The initial step in most facial age estimation systems consists of accurately aligning a model to the output of a face detector (e.g. an Active Appearance Model). This fitting process is very expensive in terms of computational resources and prone to get stuck in local minima. This makes it impractical for analysing faces in resource limited computing devices. In this paper we build a face age regressor that is able to work directly on faces cropped using a state-of-the-art face detector. Our procedure uses K nearest neighbours (K-NN) regression with a metric based on a properly tuned Fisher Linear Discriminant Analysis (LDA) projection matrix. On FG-NET we achieve a state-of-the-art Mean Absolute Error (MAE) of 5.72 years with manually aligned faces. Using face images cropped by a face detector we get a MAE of 6.87 years in the same database. Moreover, most of the algorithms presented in the literature have been evaluated on single database experiments and therefore, they report optimistically biased results. In our cross-database experiments we get a MAE of roughly 12 years, which would be the expected performance in a real world application.
Resumo:
Material properties of soft fibrous tissues are highly conditioned by the hierarchical structure of this kind of composites. Collagen based tissues present, at decreasing length scales, a complex framework of fibres, fibrils, tropocollagen molecules and amino-acids. Understanding the mechanical behaviour at nano-scale level is critical to accurately incorporate this structural information in phenomenological damage models. In this work we derive a relationship between the mechanical and geometrical properties of the fibril constituents and the soft tissue material parameters at macroscopic scale. A Hodge–Petruska two-dimensional model has been used to describe the fibrils as staggered arrays of tropocollagen molecules. After a mechanical characterisation of each of the fibril components, two fibril failures modes have been defined related with two planes of weakness. A phenomenological continuous damage model with regularised softening was presented along with meso-structurally based definitions for its material parameters. Finally, numerical analysis at fibril, fibre and tissue levels are presented to show the capabilities of the model
Resumo:
We established stable COS-7 cell lines overexpressing recombinant PTPMEG and an inactive mutant form in which the active site cysteine is mutated to serine (PTPMEGCS). We found that both endogenous and recombinant enzyme were primarily located in the membrane and cytoskeletal fractions of COS-7 cells. Endogenous PTPMEG accounts for only 1/3000th of the total tyrosine phosphatase activity in COS-7 cells and transfected cells expressed 2- to 7-fold higher levels of the enzyme. These levels of overexpression did not result in detectable changes in either total tyrosine phosphatase activity or the state of protein tyrosine phosphorylation as determined by immunoblotting of cell homogenates with anti-phosphotyrosine antibodies. Despite the low levels of activity for PTPMEG, we found that overexpressing cells grew slower and reached confluence at a lower density than vector transfected cells. Surprisingly, PTPMEGCS-transfected cells also reach confluence at a lower density than vector-transfected cells, although they grow to higher density than PTPMEG-transfected cells. Both constructs inhibited the ability of COS-7 cells to form colonies in soft agar, with the native PTPMEG having a greater effect (30-fold) than PTPMEGCS (10-fold). These results indicate that in COS-7 cells both PTPMEG and PTPMEGCS inhibit cell proliferation, reduce the saturation density, and block the ability of these cells to grow without adhering to a solid matrix.
Resumo:
Calcium from bone and shell is isotopically lighter than calcium of soft tissue from the same organism and isotopically lighter than source (dietary) calcium. When measured as the 44Ca/40Ca isotopic ratio, the total range of variation observed is 5.5‰, and as much as 4‰ variation is found in a single organism. The observed intraorganismal calcium isotopic variations and the isotopic differences between tissues and diet indicate that isotopic fractionation occurs mainly as a result of mineralization. Soft tissue calcium becomes heavier or lighter than source calcium during periods when there is net gain or loss of mineral mass, respectively. These results suggest that variations of natural calcium isotope ratios in tissues may be useful for assessing the calcium and mineral balance of organisms without introducing isotopic tracers.
Resumo:
Recent research has cast doubt on the reliability of bones and teeth for reconstructing phylogenetic relationships among higher primate species and genera. Herein, we investigate whether this problem is confined to hard tissues by examining the utility of higher primate soft-tissue characters for reconstructing phylogenetic relationships at low taxonomic levels. We use cladistic methods to analyze 197 soft-tissue characters for the extant hominoids and then compare the resulting phylogenetic hypotheses with the group's consensus molecular phylogeny, which is widely considered to be accurate. We show that the soft-tissue characters yield robust phylogenetic hypotheses that are compatible with the molecular phylogeny. Given the strength of the evidence for molecular phylogeny, these results indicate that, unlike craniodental hard-tissue characters, soft tissues are reliable for reconstructing phylogenetic relationships among higher primate species and genera. Thus, in higher primates at least, some types of morphological data are more useful than others for phylogeny reconstruction.
Resumo:
In this paper, the chemical reactivity of C3 of phosphoenolpyruvate (PEP) has been analyzed in terms of density functional theory quantified through quantum chemistry calculations. PEP is involved in a number of important enzymatic reactions, in which its C3 atom behaves like a base. In three different enzymatic reactions analyzed here, C3 sometimes behaves like a soft base and sometimes behaves like a hard base in terms of the hard-soft acid-base principle. This dual nature of C3 of PEP was found to be related to the conformational change of the molecule. This leads to a testable hypothesis: that PEP adopts particular conformations in the enzyme-substrate complexes of different PEP-using enzymes, and that the enzymes control the reactivity through controlling the dihedral angle between the carboxylate and the C==C double bond of PEP.
Resumo:
The phase diagram of soft spheres with size dispersion is studied by means of an optimized Monte Carlo algorithm which allows us to equilibrate below the kinetic glass transition for all size distributions. The system ubiquitously undergoes a first-order freezing transition. While for a small size dispersion the frozen phase has a crystalline structure, large density inhomogeneities appear in the highly disperse systems. Studying the interplay between the equilibrium phase diagram and the kinetic glass transition, we argue that the experimentally found terminal polydispersity of colloids is a purely kinetic phenomenon.
Resumo:
Several recent works deal with 3D data in mobile robotic problems, e.g., mapping. Data comes from any kind of sensor (time of flight, Kinect or 3D lasers) that provide a huge amount of unorganized 3D data. In this paper we detail an efficient approach to build complete 3D models using a soft computing method, the Growing Neural Gas (GNG). As neural models deal easily with noise, imprecision, uncertainty or partial data, GNG provides better results than other approaches. The GNG obtained is then applied to a sequence. We present a comprehensive study on GNG parameters to ensure the best result at the lowest time cost. From this GNG structure, we propose to calculate planar patches and thus obtaining a fast method to compute the movement performed by a mobile robot by means of a 3D models registration algorithm. Final results of 3D mapping are also shown.
Resumo:
Commercial off-the-shelf microprocessors are the core of low-cost embedded systems due to their programmability and cost-effectiveness. Recent advances in electronic technologies have allowed remarkable improvements in their performance. However, they have also made microprocessors more susceptible to transient faults induced by radiation. These non-destructive events (soft errors), may cause a microprocessor to produce a wrong computation result or lose control of a system with catastrophic consequences. Therefore, soft error mitigation has become a compulsory requirement for an increasing number of applications, which operate from the space to the ground level. In this context, this paper uses the concept of selective hardening, which is aimed to design reduced-overhead and flexible mitigation techniques. Following this concept, a novel flexible version of the software-based fault recovery technique known as SWIFT-R is proposed. Our approach makes possible to select different registers subsets from the microprocessor register file to be protected on software. Thus, design space is enriched with a wide spectrum of new partially protected versions, which offer more flexibility to designers. This permits to find the best trade-offs between performance, code size, and fault coverage. Three case studies have been developed to show the applicability and flexibility of the proposal.