970 resultados para silicon nanocrystals
Resumo:
Luster is a metal glass nanocomposite layer first produced in the Middle East in early Islamic times ( 9th AD) made of metal copper or silver nanoparticles embedded in a silica-based glassy matrix. These nanoparticles are produced by ion exchange between Cu+ and Ag+ and alkaline ions from the glassy matrix and further growth in a reducing atmosphere. The most striking property of luster is its capability of reflecting light like a continuous metal layer and it was unexpectedly found to be linked to one single production parameter: the presence of lead in the glassy matrix composition. The purpose of this article is to describe the characteristics and differences of the nanoparticle layers developed on lead rich and lead free glasses. Copper luster layers obtained using the ancient recipes and methods are analyzed by means of elastic ion backscattering spectroscopy associated with other analytical techniques. The depth profile of the different elements is determined, showing that the luster layer formed in lead rich glasses is 5–6 times thinner and 3–4 times Cu richer. Therefore, the metal nanoparticles are more densely packed in the layer and this fact is related to its higher reflectivity. It is shown that lead influences the structure of the metal nanoparticle layer through the change of the precipitation kinetics
Resumo:
In many European countries, image quality for digital x-ray systems used in screening mammography is currently specified using a threshold-detail detectability method. This is a two-part study that proposes an alternative method based on calculated detectability for a model observer: the first part of the work presents a characterization of the systems. Eleven digital mammography systems were included in the study; four computed radiography (CR) systems, and a group of seven digital radiography (DR) detectors, composed of three amorphous selenium-based detectors, three caesium iodide scintillator systems and a silicon wafer-based photon counting system. The technical parameters assessed included the system response curve, detector uniformity error, pre-sampling modulation transfer function (MTF), normalized noise power spectrum (NNPS) and detective quantum efficiency (DQE). Approximate quantum noise limited exposure range was examined using a separation of noise sources based upon standard deviation. Noise separation showed that electronic noise was the dominant noise at low detector air kerma for three systems; the remaining systems showed quantum noise limited behaviour between 12.5 and 380 µGy. Greater variation in detector MTF was found for the DR group compared to the CR systems; MTF at 5 mm(-1) varied from 0.08 to 0.23 for the CR detectors against a range of 0.16-0.64 for the DR units. The needle CR detector had a higher MTF, lower NNPS and higher DQE at 5 mm(-1) than the powder CR phosphors. DQE at 5 mm(-1) ranged from 0.02 to 0.20 for the CR systems, while DQE at 5 mm(-1) for the DR group ranged from 0.04 to 0.41, indicating higher DQE for the DR detectors and needle CR system than for the powder CR phosphor systems. The technical evaluation section of the study showed that the digital mammography systems were well set up and exhibiting typical performance for the detector technology employed in the respective systems.
Resumo:
The inhalation of airborne pollutants, such as asbestos or silica, is linked to inflammation of the lung, fibrosis, and lung cancer. How the presence of pathogenic dust is recognized and how chronic inflammatory diseases are triggered are poorly understood. Here, we show that asbestos and silica are sensed by the Nalp3 inflammasome, whose subsequent activation leads to interleukin-1beta secretion. Inflammasome activation is triggered by reactive oxygen species, which are generated by a NADPH oxidase upon particle phagocytosis. (NADPH is the reduced form of nicotinamide adenine dinucleotide phosphate.) In a model of asbestos inhalation, Nalp3-/- mice showed diminished recruitment of inflammatory cells to the lungs, paralleled by lower cytokine production. Our findings implicate the Nalp3 inflammasome in particulate matter-related pulmonary diseases and support its role as a major proinflammatory "danger" receptor
Resumo:
In this bachelor's thesis a relay card for capacitance measurements was designed, built and tested. The study was made for the research and development laboratory of VTI Technologies, which manufactures capacitive silicon micro electro mechanical accelerometers and pressure sensors. As the size of the sensors is decreasing the capacitance value of the sensors also decreases. The decreased capacitance causes a need for new and more accurate measurement systems. The technology used in the instrument measuring the capacitance dictates a framework how the relay card should be designed, thus the operating principle of the instrument must be known. To achieve accurate results the measurement instrument and its functions needed to be used correctly. The relay card was designed using printed circuit board design methods that minimize interference coupling to the measurement. The relay card that was designed in this study is modular. It consists of a separate CPU card, which was used to control the add-on cards connected to it. The CPU card was controlled from a computer through a serial bus. Two add-on cards for the CPU card were designed in this study. The first one was the measurement card, which could be used to measure 32 capacitive sensors. The second add-on card was the MUX card, which could be used to switch between two measurement cards. The capacitance measurements carried out through the MUX card and the measurement cards were characterized with a series of test measurements. The test measurement data was then analysed. The relay card design was confirmed to work and offer accurate measurement results up to a measurement frequency of 10 MHz. The length of the measurement cables limited the measurement frequency.
Resumo:
It has been already demonstrated that thyroid hormone (T3) is one of the most important stimulating factors in peripheral nerve regeneration. We have recently shown that local administration of T3 in silicon tubes at the level of the transected rat sciatic nerve enhanced axonal regeneration and improved functional recovery. Silicon, however, cannot be used in humans because it causes a chronic inflammatory reaction. Therefore, in order to provide future clinical applications of thyroid hormone in human peripheral nerve lesions, we carried out comparative studies on the regeneration of transected rat sciatic nerve bridged either by biodegradable P(DLLA-(-CL) or by silicon nerve guides, both guides filled with either T3 or phosphate buffer. Our macroscopic observation revealed that 85% of the biodegradable guides allowed the expected regeneration of the transected sciatic nerve. The morphological, morphometric and electrophysiological analysis showed that T3 in biodegradable guides induces a significant increase in the number of myelinated regenerated axons (6862 +/- 1831 in control vs. 11799 +/- 1163 in T3-treated). Also, T3 skewed the diameter of myelinated axons toward larger values than in controls. Moreover, T3 increases the compound muscle action potential amplitude of the flexor and extensor muscles of the treated rats. This T3 stimulation in biodegradable guides was equally well to that obtained by using silicone guides. In conclusion, the administration of T3 in biodegradable guides significantly improves sciatic nerve regeneration, confirming the feasibility of our technique to provide a serious step towards future clinical application of T3 in human peripheral nerve injuries.
Resumo:
Many authors have discussed a decline in internal labor markets and an apparent shift to a new employment contract, characterized by less commitment between employer and employee and more portable skills. These discussions occur without much evidence on what employment contract employees currently feel is fair. We perfomed quasi-experimental surveys to study when employees in the U.S. andCanada feel that layoffs are fair.Layoffs were perceived as more fair if they were due to lower product demand than if the result of employee suggestions. This result appears to be solely due to norms of reciprocity (companiesshould not punish employees for their efforts), rather than norms of sharing rents, as new technology was also considered a justification for layoffs.Consistent with theories of distributive and procedural equity, layoffs were perceived as more fair if the CEO voluntarily shared the pain. CEO bonuses due to layoffs lowered their reported fairness only slightly.Respondents in Silicon Valley were not more accepting of layoffsthan were those in Canada on average, although the justificationsconsidered valid differed slightly.
Resumo:
Two alloys, Fe80Nb10B10 and Fe70Ni14Zr6B10, were produced by mechanical alloying. The formation of thenanocrystallites (about 7-8 nm at 80h MA) was detected by X-ray diffraction. After milling for 80 h, differentialscanning calorimetry scans show low-temperature recovery processes and several crystallization processes related with crystal growth and reordering of crystalline phases. The apparent activation energy values are 315 ± 40 kJ mol–1 for alloy A, and 295 ± 20 kJ mol–1 and 320 ± 25 kJ mol–1 for alloy B. Furthermore, a melt-spun Fe-based ribbon was mechanically alloyed to obtain a powdered-like alloy. The increase of the rotation speed and the ball-to-powderweight ratio reduces the necessary time to obtain the powdered form
Resumo:
he complex refractive index of SiO2 layers containing Si nanoclusters (Si-nc) has been measured by spectroscopic ellipsometry in the range from 1.5 to 5.0 eV. It has been correlated with the amount of Si excess accurately measured by x-ray photoelectron spectroscopy and the nanocluster size determined by energy-filtered transmission electron microscopy. The Si-nc embedded in SiO2 have been produced by a fourfold Si+ ion implantation, providing uniform Si excess aimed at a reliable ellipsometric modeling. The complex refractive index of the Si-nc phase has been calculated by the application of the Bruggeman effective-medium approximation to the composite media. The characteristic resonances of the refractive index and extinction coefficient of bulk Si vanish out in Si-nc. In agreement with theoretical simulations, a significant reduction of the refractive index of Si-nc is observed, in comparison with bulk and amorphous silicon. The knowledge of the optical properties of these composite layers is crucial for the realization of Si-based waveguides and light-emitting devices.
Resumo:
The microstructural and optical analysis of SiO2 layers emitting white luminescence is reported. These structures have been synthesized by sequential Si+ and C+ ion implantation and high-temperature annealing. Their white emission results from the presence of up to three bands in the photoluminescence (PL) spectra, covering the whole visible spectral range. The microstructural characterization reveals the presence of a complex multilayer structure: Si nanocrystals are only observed outside the main C-implanted peak region, with a lower density closer to the surface, being also smaller in size. This lack of uniformity in their density has been related to the inhibiting role of C in their growth dynamics. These nanocrystals are responsible for the band appearing in the red region of the PL spectrum. The analysis of the thermal evolution of the red PL band and its behavior after hydrogenation shows that carbon implantation also prevents the formation of well passivated Si/SiO2 interfaces. On the other hand, the PL bands appearing at higher energies show the existence of two different characteristics as a function of the implanted dose. For excess atomic concentrations below or equal to 10%, the spectra show a PL band in the blue region. At higher doses, two bands dominate the green¿blue spectral region. The evolution of these bands with the implanted dose and annealing time suggests that they are related to the formation of carbon-rich precipitates in the implanted region. Moreover, PL versus depth measurements provide a direct correlation of the green band with the carbon-implanted profile. These PL bands have been assigned to two distinct amorphous phases, with a composition close to elemental graphitic carbon or stoichiometric SiC.
Resumo:
We have studied the effects of rapid thermal annealing at 1300¿°C on GaN epilayers grown on AlN buffered Si(111) and on sapphire substrates. After annealing, the epilayers grown on Si display visible alterations with craterlike morphology scattered over the surface. The annealed GaN/Si layers were characterized by a range of experimental techniques: scanning electron microscopy, optical confocal imaging, energy dispersive x-ray microanalysis, Raman scattering, and cathodoluminescence. A substantial Si migration to the GaN epilayer was observed in the crater regions, where decomposition of GaN and formation of Si3N4 crystallites as well as metallic Ga droplets and Si nanocrystals have occurred. The average diameter of the Si nanocrystals was estimated from Raman scattering to be around 3¿nm. Such annealing effects, which are not observed in GaN grown on sapphire, are a significant issue for applications of GaN grown on Si(111) substrates when subsequent high-temperature processing is required.
Resumo:
The self-assembled growth of GaN nanorods on Si (111) substrates by plasma-assisted molecular beam epitaxy under nitrogen-rich conditions is investigated. An amorphous silicon nitride layer is formed in the initial stage of growth that prevents the formation of a GaN wetting layer. The nucleation time was found to be strongly influenced by the substrate temperature and was more than 30 min for the applied growth conditions. The observed tapering and reduced length of silicon-doped nanorods is explained by enhanced nucleation on nonpolar facets and proves Ga-adatom diffusion on nanorod sidewalls as one contribution to the axial growth. The presence of Mg leads to an increased radial growth rate with a simultaneous decrease of the nanorod length and reduces the nucleation time for high Mg concentrations.
Resumo:
The occurrence of heterostructures of cubic silicon/hexagonal silicon as disks defined along the nanowire (111) growth direction is reviewed in detail for Si nanowires obtained using Cu as catalyst. Detailed measurements on the structural properties of both semiconductor phases and their interface are presented. We observe that during growth, lamellar twinning on the cubic phase along the (111) direction is generated. Consecutive presence of twins along the (111) growth direction was found to be correlated with the origin of the local formation of the hexagonal Si segments along the nanowires, which define quantum wells of hexagonal Si diamond. Finally, we evaluate and comment on the consequences of the twins and wurtzite in the final electronic properties of the wires with the help of the predicted energy band diagram.
Resumo:
This paper presents a thermal modeling for power management of a new three-dimensional (3-D) thinned dies stacking process. Besides the high concentration of power dissipating sources, which is the direct consequence of the very interesting integration efficiency increase, this new ultra-compact packaging technology can suffer of the poor thermal conductivity (about 700 times smaller than silicon one) of the benzocyclobutene (BCB) used as both adhesive and planarization layers in each level of the stack. Thermal simulation was conducted using three-dimensional (3-D) FEM tool to analyze the specific behaviors in such stacked structure and to optimize the design rules. This study first describes the heat transfer limitation through the vertical path by examining particularly the case of the high dissipating sources under small area. First results of characterization in transient regime by means of dedicated test device mounted in single level structure are presented. For the design optimization, the thermal draining capabilities of a copper grid or full copper plate embedded in the intermediate layer of stacked structure are evaluated as a function of the technological parameters and the physical properties. It is shown an interest for the transverse heat extraction under the buffer devices dissipating most the power and generally localized in the peripheral zone, and for the temperature uniformization, by heat spreading mechanism, in the localized regions where the attachment of the thin die is altered. Finally, all conclusions of this analysis are used for the quantitative projections of the thermal performance of a first demonstrator based on a three-levels stacking structure for space application.