883 resultados para sensitivity
Resumo:
The proton-pumping ATPase (H+-ATPase) of the plant plasma membrane is encoded by two major gene subfamilies. To characterize individual H+-ATPases, PMA2, an H+-ATPase isoform of tobacco (Nicotiana plumbaginifolia), was expressed in Saccharomyces cerevisiae and found to functionally replace the yeast H+-ATPase if the external pH was kept above 5.0 (A. de Kerchove d'Exaerde, P. Supply, J.P. Dufour, P. Bogaerts, D. Thinès, A. Goffeau, M. Boutry [1995] J Biol Chem 270: 23828–23837). In the present study we replaced the yeast H+-ATPase with PMA4, an H+-ATPase isoform from the second subfamily. Yeast expressing PMA4 grew at a pH as low as 4.0. This was correlated with a higher acidification of the external medium and an approximately 50% increase of ATPase activity compared with PMA2. Although both PMA2 and PMA4 had a similar pH optimum (6.6–6.8), the profile was different on the alkaline side. At pH 7.2 PMA2 kept more than 80% of the maximal activity, whereas that of PMA4 decreased to less than 40%. Both enzymes were stimulated up to 3-fold by 100 μg/mL lysophosphatidylcholine, but this stimulation vanished at a higher concentration in PMA4. These data demonstrate functional differences between two plant H+-ATPases expressed in the same heterologous host. Characterization of two PMA4 mutants selected to allow yeast growth at pH 3.0 revealed that mutations within the carboxy-terminal region of PMA4 could still improve the enzyme, resulting in better growth of yeast cells.
Resumo:
Wild-type Arabidopsis plants, the starch-deficient mutant TL46, and the near-starchless mutant TL25 were evaluated by noninvasive in situ methods for their capacity for net CO2 assimilation, true rates of photosynthetic O2 evolution (determined from chlorophyll fluorescence measurements of photosystem II), partitioning of photosynthate into sucrose and starch, and plant growth. Compared with wild-type plants, the starch mutants showed reduced photosynthetic capacity, with the largest reduction occurring in mutant TL25 subjected to high light and increased CO2 partial pressure. The extent of stimulation of CO2 assimilation by increasing CO2 or by reducing O2 partial pressure was significantly less for the starch mutants than for wild-type plants. Under high light and moderate to high levels of CO2, the rates of CO2 assimilation and O2 evolution and the percentage inhibition of photosynthesis by low O2 were higher for the wild type than for the mutants. The relative rates of 14CO2 incorporation into starch under high light and high CO2 followed the patterns of photosynthetic capacity, with TL46 showing 31% to 40% of the starch-labeling rates of the wild type and TL25 showing less than 14% incorporation. Overall, there were significant correlations between the rates of starch synthesis and CO2 assimilation and between the rates of starch synthesis and cumulative leaf area. These results indicate that leaf starch plays an important role as a transient reserve, the synthesis of which can ameliorate any potential reduction in photosynthesis caused by feedback regulation.
Resumo:
TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) is a recently identified member of the tumor necrosis factor cytokine superfamily. TRAIL has been shown to induce apoptosis in various tumor cell lines, whereas most primary cells seem to be resistant. These observations have raised considerable interest in the use of TRAIL in tumor therapy. Yet little is known about the physiological function of TRAIL. This is particularly the case in the immune system, where TRAIL has been suggested by some to be involved in target cell killing and lymphocyte death. We have developed a panel of mAbs and soluble proteins to address the role of TRAIL in lymphocyte development. These studies demonstrate activation-induced sensitization of thymocytes to TRAIL-mediated apoptosis and expression of the apoptosis-inducing TRAIL receptors. However, with the use of several model systems, our subsequent experiments rule out the possibility that TRAIL plays a major role in antigen-induced deletion of thymocytes. In contrast to thymocytes, there is no up-regulation of TRAIL receptors in peripheral T cells on activation, which remain resistant to TRAIL. Thus, susceptibility to TRAIL-induced apoptosis is controlled differently by central and peripheral T cells.
Resumo:
The underlying bases of the considerable interindividual variability in pain-related traits are starting to be revealed. Although the relative importance of genes versus experience in human pain perception remains unclear, rodent populations display large and heritable differences in both nociceptive and analgesic sensitivity. The identification and characterization of particularly divergent populations provides a powerful initial step in the genetic analysis of pain, because these models can be exploited to identify genes contributing to the behavior-level variability. Ultimately, DNA sequence differences representing the differential alleles at pain-relevant genes can be identified. Thus, by using a combination of “top-down” and “bottom-up” strategies, we are now able to genetically dissect even complex biological traits like pain. The present review summarizes the current progress toward these ends in both humans and rodents.
Resumo:
Rapid climate change characterizes numerous terrestrial sediment records during and since the last glaciation. Vegetational response is best expressed in terrestrial records near ecotones, where sensitivity to climate change is greatest, and response times are as short as decades.
Resumo:
Ozone is a major gaseous pollutant thought to contribute to forest decline. Although the physiological and morphological responses of forest trees to ozone have been well characterized, little is known about the molecular basis for these responses. Our studies compared the response to ozone of ozone-sensitive and ozone-tolerant clones of hybrid poplar (Populus maximowizii × Populus trichocarpa) at the physiological and molecular levels. Gas-exchange analyses demonstrated clear differences between the ozone-sensitive clone 388 and the ozone-tolerant clone 245. Although ozone induced a decrease in photosynthetic rate and stomatal conductance in both clones, the magnitude of the decrease in stomatal conductance was significantly greater in the ozone-tolerant clone. RNA-blot analysis established that ozone-induced mRNA levels for phenylalanine ammonia-lyase, O-methyltransferase, a pathogenesis-related protein, and a wound-inducible gene were significantly higher in the ozone-tolerant than in the ozone-sensitive plants. Wound- and pathogen-induced levels of these mRNAs were also higher in the ozone-tolerant compared with the ozone-sensitive plants. The different physiological and molecular responses to ozone exposure exhibited by clones 245 and 388 suggest that ozone tolerance involves the activation of salicylic-acid- and jasmonic-acid-mediated signaling pathways, which may be important in triggering defense responses against oxidative stress.
Resumo:
Growth of a zone of maize (Zea mays L.) coleoptiles and pea (Pisum sativum L.) internodes was greatly suppressed when the organ was decapitated or ringed at an upper position with the auxin transport inhibitor N-1-naphthylphthalamic acid (NPA) mixed with lanolin. The transport of apically applied 3H-labeled indole-3-acetic acid (IAA) was similarly inhibited by NPA. The growth suppressed by NPA or decapitation was restored by the IAA mixed with lanolin and applied directly to the zone, and the maximal capacity to respond to IAA did not change after NPA treatment, although it declined slightly after decapitation. The growth rate at IAA saturation was greater than the rate in intact, nontreated plants. It was concluded that growth is limited and controlled by auxin supplied from the apical region. In maize coleoptiles the sensitivity to IAA increased more than 3 times when the auxin level was reduced over a few hours with NPA treatment. This result, together with our previous result that the maximal capacity to respond to IAA declines in pea internodes when the IAA level is enhanced for a few hours, indicates that the IAA concentration-response relationship is subject to relatively slow adaptive regulation by IAA itself. The spontaneous growth recovery observed in decapitated maize coleoptiles was prevented by an NPA ring placed at an upper position of the stump, supporting the view that recovery is due to regenerated auxin-producing activity. The sensitivity increase also appeared to participate in an early recovery phase, causing a growth rate greater than in intact plants.
Resumo:
Hd6 is a quantitative trait locus involved in rice photoperiod sensitivity. It was detected in backcross progeny derived from a cross between the japonica variety Nipponbare and the indica variety Kasalath. To isolate a gene at Hd6, we used a large segregating population for the high-resolution and fine-scale mapping of Hd6 and constructed genomic clone contigs around the Hd6 region. Linkage analysis with P1-derived artificial chromosome clone-derived DNA markers delimited Hd6 to a 26.4-kb genomic region. We identified a gene encoding the α subunit of protein kinase CK2 (CK2α) in this region. The Nipponbare allele of CK2α contains a premature stop codon, and the resulting truncated product is undoubtedly nonfunctional. Genetic complementation analysis revealed that the Kasalath allele of CK2α increases days-to-heading. Map-based cloning with advanced backcross progeny enabled us to identify a gene underlying a quantitative trait locus even though it exhibited a relatively small effect on the phenotype.
Resumo:
The retinas of macaque monkeys usually contain three types of photopigment, providing them with trichromatic color vision homologous to that of humans. However, we recently used molecular genetic analysis to identify several macaques with a dichromatic genotype. The affected X chromosome of these animals contains a hybrid gene of long-wavelength-sensitive (L) and middle-wavelength-sensitive (M) photopigments instead of separate genes encoding L and M photopigments. The product of the hybrid gene exhibits a spectral sensitivity close to that of M photopigment; consequently, male monkeys carrying the hybrid gene are genetic protanopes, effectively lacking L photopigment. In the present study, we assessed retinal expression of L photopigment in monkeys carrying the hybrid gene. The relative sensitivities to middle-wavelength (green) and long-wavelength (red) light were measured by electroretinogram flicker photometry. We found the sensitivity to red light to be extremely low in protanopic male monkeys compared with monkeys with the normal genotype. In female heterozygotes, sensitivity to red light was intermediate between the genetic protanopes and normal monkeys. Decreased sensitivity to long wavelengths was thus consistent with genetic loss of L photopigment.
Resumo:
The protein p70s6k/p85s6k lies on a mitogen-stimulated signaling pathway and plays a key role in G1 progression of the cell cycle. Activation of this enzyme is mediated by a complex set of phosphorylation events, which has largely contributed to the difficulty in identifying the upstream kinases that mediate p70s6k activation. Genetics has proved a powerful complementary approach for such problems, providing an alternative means to identify components of signaling cascades and their functional end targets. As a first step toward implementing such an approach, we have cloned cDNAs encoding the Drosophila melanogaster p70s6k homolog (Dp70s6k). Dp70s6k is encoded by a single gene, which generates three mRNA transcripts and exhibits an overall identity of 78% in the catalytic domain with its mammalian counterpart. Importantly, this high identity extends beyond the catalytic domain to the N terminus, linker region, and the autoinhibitory domain. Furthermore, all the critical phosphorylation sites required for mammalian p70s6k activation are conserved within these same domains of Dp70s6k. Chief amongst these conserved sites are those associated with the selective rapamycin-induced p70s6k dephosphorylation and inactivation. Consistent with this observation, analysis of total S6 kinase activity in fractionated Drosophila Schneider line 2 cell extracts reveals two peaks of activity, only one of which is rapamycin sensitive. By employing a monospecific polyclonal antibody generated against Dp70s6k, we show that the cloned DP70s6k cDNA has identity with only the rapamycin sensitive peak, suggesting that this biological system would be useful in determining not only the mechanism of p70s6k activation, but also in elucidating the mechanism by which rapamycin acts to inhibit cell growth.
Resumo:
L-ascorbic acid (vitamin C) is a powerful reducing agent found in millimolar concentrations in plants, and is proposed to play an important role in scavenging free radicals in plants and animals. However, surprisingly little is known about the role of this antioxidant in plant environmental stress adaptation or ascorbate biosynthesis. We report the isolation of soz1, a semi-dominant ozone-sensitive mutant that accumulates only 30% of the normal ascorbate concentration. The results of genetic approaches and feeding studies show that the ascorbate concentration affects foliar resistance to the oxidizing gas ozone. Consistent with the proposed role for ascorbate in reactive oxygen species detoxification, lipid peroxides are elevated in soz1, but not in wild type following ozone fumigation. We show that the soz1 mutant is hypersensitive to both sulfur dioxide and ultraviolet B irradiation, thus implicating ascorbate in defense against varied environmental stresses. In addition to defining the first ascorbate deficient mutant in plants, these results indicate that screening for ozone-sensitive mutants is a powerful method for identifying physiologically important antioxidant mechanisms and signal transduction pathways. Analysis of soz1 should lead to more information about the physiological roles and metabolism of ascorbate.
Resumo:
Coenzyme Q (ubiquinone or Q) plays a well known electron transport function in the respiratory chain, and recent evidence suggests that the reduced form of ubiquinone (QH2) may play a second role as a potent lipid-soluble antioxidant. To probe the function of QH2 as an antioxidant in vivo, we have made use of a Q-deficient strain of Saccharomyces cerevisiae harboring a deletion in the COQ3 gene [Clarke, C. F., Williams, W. & Teruya, J. H. (1991) J. Biol. Chem. 266, 16636-16644]. Q-deficient yeast and the wild-type parental strain were subjected to treatment with polyunsaturated fatty acids, which are prone to autoxidation and breakdown into toxic products. In this study we find that Q-deficient yeast are hypersensitive to the autoxidation products of linolenic acid and other polyunsaturated fatty acids. In contrast, the monounsaturated oleic acid, which is resistant to autoxidative breakdown, has no effect. The hypersensitivity of the coq3delta strains can be prevented by the presence of the COQ3 gene on a single copy plasmid, indicating that the sensitive phenotype results solely from the inability to produce Q. As a result of polyunsaturated fatty acid treatment, there is a marked elevation of lipid hydroperoxides in the coq3 mutant as compared with either wild-type or respiratory-deficient control strains. The hypersensitivity of the Q-deficient mutant can be rescued by the addition of butylated hydroxytoluene, alpha-tocopherol, or trolox, an aqueous soluble vitamin E analog. The results indicate that autoxidation products of polyunsaturated fatty acids mediate the cell killing and that QH2 plays an important role in vivo in protecting eukaryotic cells from these products.
Resumo:
We demonstrate here that coexpression of ROMK2, an inwardly rectifying ATP-sensitive renal K+ channel (IKATP) with cystic fibrosis transmembrane regulator (CFTR) significantly enhances the sensitivity of ROMK2 to the sulfonylurea compound glibenclamide. When expressed alone, ROMK2 is relatively insensitive to glibenclamide. The interaction between ROMK2, CFTR, and glibenclamide is modulated by altering the phosphorylation state of either ROMK2, CFTR, or an associated protein, as exogenous MgATP and the catalytic subunit of protein kinase A significantly attenuate the inhibitory effect of glibenclamide on ROMK2. Thus CFTR, which has been demonstrated to interact with both Na+ and Cl- channels in airway epithelium, modulates the function of renal ROMK2 K+ channels.