953 resultados para semilinear parabolic equations
Resumo:
In this second talk on dissipative structures in fiber applications, we overview theoretical aspects of the generation, evolution and characterization of self-similar parabolic-shaped pulses in fiber amplifier media. In particular, we present a perturbation analysis that describes the structural changes induced by third-order fiber dispersion on the parabolic pulse solution of the nonlinear Schrödinger equation with gain. Promising applications of parabolic pulses in optical signal post-processing and regeneration in communication systems are also discussed.
Resumo:
We study solutions of the nonlinear Schrödinger equation (NLSE) with gain, describing optical pulse propagation in an amplifying medium. We construct a semiclassical self-similar solution with a parabolic temporal variation that corresponds to the energy-containing core of the asymptotically propagating pulse in the amplifying medium. We match the self-similar core through Painlevé functions to the solution of the linearized equation that corresponds to the low-amplitude tails of the pulse. The analytic solution accurately reproduces the numerically calculated solution of the NLSE.
Resumo:
We examine similarities and differences between high-power parabolic pulse generation in an active medium and in tapered fiber with decreasing normal dispersion. Using a realistic tapered fiber design, we demonstrate the possibility of parabolic pulse generation without an external pump and determine the limitations of this approach. © 2007 Optical Society of America.
Resumo:
An iterative method for reconstruction of solutions to second order elliptic equations by Cauchy data given on a part of the boundary, is presented. At each iteration step, a series of mixed well-posed boundary value problems are solved for the elliptic operator and its adjoint. The convergence proof of this method in a weighted L2 space is included. (© 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)
Resumo:
This work introduces a Gaussian variational mean-field approximation for inference in dynamical systems which can be modeled by ordinary stochastic differential equations. This new approach allows one to express the variational free energy as a functional of the marginal moments of the approximating Gaussian process. A restriction of the moment equations to piecewise polynomial functions, over time, dramatically reduces the complexity of approximate inference for stochastic differential equation models and makes it comparable to that of discrete time hidden Markov models. The algorithm is demonstrated on state and parameter estimation for nonlinear problems with up to 1000 dimensional state vectors and compares the results empirically with various well-known inference methodologies.
Resumo:
The paper has been presented at the 12th International Conference on Applications of Computer Algebra, Varna, Bulgaria, June, 2006
Resumo:
The paper has been presented at the 12th International Conference on Applications of Computer Algebra, Varna, Bulgaria, June, 2006
Resumo:
This paper is partially supported by project ISM-4 of Department for Scientific Research, “Paisii Hilendarski” University of Plovdiv.
Resumo:
The author is partially supported by: M. U. R. S. T. Prog. Nazionale “Problemi e Metodi nella Teoria delle Equazioni Iperboliche”.
Resumo:
We extend the method of quasilinearization to differential equations in abstract normal cones. Under some assumptions, corresponding monotone iterations converge to the unique solution of our problem and this convergence is superlinear or semi–superlinear
Resumo:
A boundary-value problems for almost nonlinear singularly perturbed systems of ordinary differential equations are considered. An asymptotic solution is constructed under some assumption and using boundary functions and generalized inverse matrix and projectors.
Resumo:
∗The author was partially supported by M.U.R.S.T. Progr. Nazionale “Problemi Non Lineari...”
Resumo:
* The authors thank the “Swiss National Science Foundation” for its support.
Resumo:
Sufficient conditions for the existence of bounded solutions of singularly perturbed impulsive differential equations are obtained. For this purpose integral manifolds are used.