992 resultados para secondary metabolism anthocyanin
Resumo:
Drug metabolism can produce metabolites with physicochemical and pharmacological properties that differ substantially from those of the parent drug, and consequently has important implications for both drug safety and efficacy. To reduce the risk of costly clinical-stage attrition due to the metabolic characteristics of drug candidates, there is a need for efficient and reliable ways to predict drug metabolism in vitro, in silico and in vivo. In this Perspective, we provide an overview of the state of the art of experimental and computational approaches for investigating drug metabolism. We highlight the scope and limitations of these methods, and indicate strategies to harvest the synergies that result from combining measurement and prediction of drug metabolism.
Resumo:
Pheochromocytoma (PHEO) and paraganglioma (PGL) are catecholamine-producing neuroendocrine tumors that arise respectively inside or outside the adrenal medulla. Several reports have shown that adrenal glucocorticoids (GC) play an important regulatory role on the genes encoding the main enzymes involved in catecholamine (CAT) synthesis i.e. tyrosine hydroxylase (TH), dopamine β-hydroxylase (DBH) and phenylethanolamine N-methyltransferase (PNMT). To assess the influence of tumor location on CAT metabolism, 66 tissue samples (53 PHEO, 13 PGL) and 73 plasma samples (50 PHEO, 23 PGL) were studied. Western blot and qPCR were performed for TH, DBH and PNMT expression. We found a significantly lower intra-tumoral concentration of CAT and metanephrines (MNs) in PGL along with a downregulation of TH and PNMT at both mRNA and protein level compared with PHEO. However, when PHEO were partitioned into noradrenergic (NorAd) and mixed tumors based on an intra-tumoral CAT ratio (NE/E >90%), PGL and NorAd PHEO sustained similar TH, DBH and PNMT gene and protein expression. CAT concentration and composition were also similar between NorAd PHEO and PGL, excluding the use of CAT or MNs to discriminate between PGL and PHEO on the basis of biochemical tests. We observed an increase of TH mRNA concentration without correlation with TH protein expression in primary cell culture of PHEO and PGL incubated with dexamethasone during 24 hours; no changes were monitored for PNMT and DBH at both mRNA and protein level in PHEO and PGL. Altogether, these results indicate that long term CAT synthesis is not driven by the close environment where the tumor develops and suggest that GC alone is not sufficient to regulate CAT synthesis pathway in PHEO/PGL.
Resumo:
Root systems consist of different root types (RTs) with distinct developmental and functional characteristics. RTs may be individually reprogrammed in response to their microenvironment to maximize adaptive plasticity. Molecular understanding of such specific remodeling-although crucial for crop improvement-is limited. Here, RT-specific transcriptomes of adult rice crown, large and fine lateral roots were assessed, revealing molecular evidence for functional diversity among individual RTs. Of the three rice RTs, crown roots displayed a significant enrichment of transcripts associated with phytohormones and secondary cell wall (SCW) metabolism, whereas lateral RTs showed a greater accumulation of transcripts related to mineral transport. In nature, arbuscular mycorrhizal (AM) symbiosis represents the default state of most root systems and is known to modify root system architecture. Rice RTs become heterogeneously colonized by AM fungi, with large laterals preferentially entering into the association. However, RT-specific transcriptional responses to AM symbiosis were quantitatively most pronounced for crown roots despite their modest physical engagement in the interaction. Furthermore, colonized crown roots adopted an expression profile more related to mycorrhizal large lateral than to noncolonized crown roots, suggesting a fundamental reprogramming of crown root character. Among these changes, a significant reduction in SCW transcripts was observed that was correlated with an alteration of SCW composition as determined by mass spectrometry. The combined change in SCW, hormone- and transport-related transcript profiles across the RTs indicates a previously overlooked switch of functional relationships among RTs during AM symbiosis, with a potential impact on root system architecture and functioning.
Resumo:
Arabidopsis (Arabidopsis thaliana) leaf trichomes are single-cell structures with a well-studied development, but little is understood about their function. Developmental studies focused mainly on the early shaping stages, and little attention has been paid to the maturation stage. We focused on the EXO70H4 exocyst subunit, one of the most up-regulated genes in the mature trichome. We uncovered EXO70H4-dependent development of the secondary cell wall layer, highly autofluorescent and callose rich, deposited only in the upper part of the trichome. The boundary is formed between the apical and the basal parts of mature trichome by a callose ring that is also deposited in an EXO70H4-dependent manner. We call this structure the Ortmannian ring (OR). Both the secondary cell wall layer and the OR are absent in the exo70H4 mutants. Ecophysiological aspects of the trichome cell wall thickening include interference with antiherbivore defense and heavy metal accumulation. Ultraviolet B light induces EXO70H4 transcription in a CONSTITUTIVE PHOTOMORPHOGENIC1-dependent way, resulting in stimulation of trichome cell wall thickening and the OR biogenesis. EXO70H4-dependent trichome cell wall hardening is a unique phenomenon, which may be conserved among a variety of the land plants. Our analyses support a concept that Arabidopsis trichome is an excellent model to study molecular mechanisms of secondary cell wall deposition.
Resumo:
Elevated serum phosphorus, calcium, and fibroblast growth factor 23 (FGF23) levels are associated with cardiovascular disease in chronic renal disease. This study evaluated the effects of sucroferric oxyhydroxide (PA21), a new iron-based phosphate binder, versus lanthanum carbonate (La) and sevelamer carbonate (Se), on serum FGF23, phosphorus, calcium, and intact parathyroid hormone (iPTH) concentrations, and the development of vascular calcification in adenine-induced chronic renal failure (CRF) rats. After induction of CRF, renal function was significantly impaired in all groups: uremic rats developed severe hyperphosphatemia, and serum iPTH increased significantly. All uremic rats (except controls) then received phosphate binders for 4 weeks. Hyperphosphatemia and increased serum iPTH were controlled to a similar extent in all phosphate binder-treatment groups. Only sucroferric oxyhydroxide was associated with significantly decreased FGF23. Vascular calcifications of the thoracic aorta were decreased by all three phosphate binders. Calcifications were better prevented at the superior part of the thoracic and abdominal aorta in the PA21 treated rats. In adenine-induced CRF rats, sucroferric oxyhydroxide was as effective as La and Se in controlling hyperphosphatemia, secondary hyperparathyroidism, and vascular calcifications. The role of FGF23 in calcification remains to be confirmed.
Resumo:
Allylnitrile, cis-crotononitrile, and 3,3 -iminodipropionitrile are known to cause vestibular toxicity in rodents, and evidence is available indicating that cis-2-pentenenitrile shares this effect. We evaluated nineteen nitriles for vestibular toxicity in wild type (129S1) and CYP2E1-null mice, including all the above, several neurotoxic nitriles, and structurally similar nitriles. A new acute toxicity test protocol was developed to facilitate evaluation of the vestibular toxicity by a specific behavioral test battery at doses up to sub-lethal levels while using a limited number of animals. A mean number of 8.5±0.3 animals per nitrile, strain and sex was necessary to obtain evidence of vestibular toxicity and optionally an estimation of the lethal dose. For several but not all nitriles, lethal doses significantly increased in CYP2E1-null mice. The protocol revealed the vestibular toxicity of five nitriles, including previously identified ototoxic compounds and one nitrile (trans-crotononitrile) known to have a different profile of neurotoxic effects in the rat. In all five cases, both sexes were affected and no decrease in susceptibility was apparent in CYP2E1-null mice respect to 129S1 mice. Fourteen nitriles caused no vestibular toxicity, including six nitriles tested in CYP2E1-null mice at doses significantly larger than the maximal doses that can be tested in wild type animals. We conclude that only a subset of low molecular weight nitriles is toxic to the vestibular system, that species-dependent differences exist in this vestibular toxicity, and that CYP2E1-mediated metabolism is not involved in this effect of nitriles although it has a role in the acute lethality of some of these compounds
Resumo:
BACKGROUND: Hybridization between incipient species is expected to become progressively limited as their genetic divergence increases and reproductive isolation proceeds. Amphibian radiations and their secondary contact zones are useful models to infer the timeframes of speciation, but empirical data from natural systems remains extremely scarce. Here we follow this approach in the European radiation of tree frogs (Hyla arborea group). We investigated a natural hybrid zone between two lineages (Hyla arborea and Hyla orientalis) of Mio-Pliocene divergence (~5 My) for comparison with other hybrid systems from this group. RESULTS: We found concordant geographic distributions of nuclear and mitochondrial gene pools, and replicated narrow transitions (~30 km) across two independent transects, indicating an advanced state of reproductive isolation and potential local barriers to dispersal. This result parallels the situation between H. arborea and H. intermedia, which share the same amount of divergence with H. orientalis. In contrast, younger lineages show much stronger admixture at secondary contacts. CONCLUSIONS: Our findings corroborate the negative relationship between hybridizability and divergence time in European tree frogs, where 5 My are necessary to achieve almost complete reproductive isolation. Speciation seems to progress homogeneously in this radiation, and might thus be driven by gradual genome-wide changes rather than single speciation genes. However, the timescale differs greatly from that of other well-studied amphibians. General assumptions on the time necessary for speciation based on evidence from unrelated taxa may thus be unreliable. In contrast, comparative hybrid zone analyses within single radiations such as our case study are useful to appreciate the advance of speciation in space and time.
Resumo:
Information on antioxidant properties at different ontological stages may help producers and food technologists to identify which cultivar and/or maturity stage are most adequate for their need, therefore this work aimed to study the changes in the antioxidant metabolism during acerola development. Fruit from cv. Flor Branca, BRS366 and Florida Sweet were harvested at different stages: immature green colored (I), physiologically mature with green color and maximum size (II), breaker (III) and full red ripe (IV). After harvest, fruits were selected, divided into four replications with 500 g each and evaluated regarding their titratable acidity, pH, soluble solids, total soluble sugar, vitamin C, polyphenol, anthocyanin, yellow flavonoid, total antioxidant activity and antioxidant enzyme activity. Anthocyanin and flavonoid were determined through LC-DAD-ESI/MS and all analysis followed a completely randomized factorial 3 x 4 design. Fruits of 'Florida Sweet' presented significantly higher soluble solids (9.46ºBrix). Vitamin C content decreased during ripening, but ripe 'BRS 366' fruits showed the greatest values (1363 mg.100 g-1) and highest TAA with 42.36 µM TEAC.g-1FW. Cyanidin 3-rhamnoside (520.76 mg.100 g-1 DM) and quercetin 3-rhamnoside (33.72 mg.100 g-1 DM) were the most abundant anthocyanin and yellow flavonoids found mainly in 'Flor Branca' fruit of acerola, whose antioxidant enzymes activities were also higher. Ripe 'Florida Sweet' fruit presents a great potential for fresh consumption, meanwhile physiologically mature 'BRS 366' fruit seems the best option for the bioactive compounds processing industry. As 'Flor Branca' fruit of acerola kept the highest activity levels, it could be an indicative of greater potential for postharvest conservation.
Resumo:
Several species of Annona (Annonaceae) are used in traditional Mexican medicine by their anti-anxiety, anticonvulsant and tranquilizing properties. It has been reported that the alkaloids isolated from some species of the Annona have affinity to serotonergic 5-HT1A receptors and modulate dopaminergic transmission, which is involved in depressive disorders. In this review it is showed the results of the antidepressant-like effect of an alkaloid extract from the aerial parts of Annona cherimola (TA) in mice. The antidepressant-like effect was evaluated in the forced swimming test. To elucidate a possible mechanism of action, experiments of synergism with antidepressant drugs, such as imipramine (IMI), clomipramine (CLIMI), and fluoxetine (FLX), were carried out. The neurotransmitter content (DA: dopamine, 5HT: serotonin and its metabolites, HVA: homovanillic acid and 5HIAA:5-hydroxyindoleacetic) in the whole brain of mice were also determined by HPLC method. The results showed that repeated treatment with TA produced antidepressant-like effects in mice. This effect was not related to an increase in locomotor activity. Administration of TA facilitated the antidepressant effect of IMI and CLIMI as well as increased the turnover of DA and 5-HT. The alkaloids: 1,2-dimethoxy-5, 6.6 to 7-tetrahydro-4H-dibenzoquinoline-3,8,9,10-tetraol, anonaine, liriodenine, and nornuciferine were the main constituents of TA.