941 resultados para rotation insensitive
Resumo:
A fully self-consistent formulation is described here for the analysis and generation of base-pairs in non-uniform DNA structures, in terms of various local parameters. It is shown that the internal "wedge parameters" are mathematically related to the parameters describing the base-pair orientation with respect to an external helix axis. Hence any one set of three translation and three rotation parameters are necessary and sufficient to completely describe the relative orientation of the base-pairs comprising a step (or doublet). A general procedure is outlined for obtaining an average or global helix axis from the local helix axes for each step. A graphical representation of the local helix axes in the form of a polar plot is also shown and its application for estimating the curvature of oligonucleotide structures is illustrated, with examples of both A and B type structures.
Resumo:
Highly purified sheep lung cyclic-3',5'-nucleotide phosphodiesterase was sensitive to Ca2+/EGTA but insensitive to exogenous calmodulin. The Ca2+-sensitivity was inhibited by trifluoperazine. Heat-treated enzyme could activate a calmodulin-deficient phosphodiesterase, suggesting the presence of endogenous calmodulin in sheep lung cyclic-3',5'-nucleotide phosphodiesterase, possibly associated with the enzyme in a Ca2+-independent manner.
Resumo:
Geometric phases have been used in NMR to implement controlled phase shift gates for quantum-information processing, only in weakly coupled systems in which the individual spins can be identified as qubits. In this work, we implement controlled phase shift gates in strongly coupled systems by using nonadiabatic geometric phases, obtained by evolving the magnetization of fictitious spin-1/2 subspaces, over a closed loop on the Bloch sphere. The dynamical phase accumulated during the evolution of the subspaces is refocused by a spin echo pulse sequence and by setting the delay of transition selective pulses such that the evolution under the homonuclear coupling makes a complete 2 pi rotation. A detailed theoretical explanation of nonadiabatic geometric phases in NMR is given by using single transition operators. Controlled phase shift gates, two qubit Deutsch-Jozsa algorithm, and parity algorithm in a qubit-qutrit system have been implemented in various strongly dipolar coupled systems obtained by orienting the molecules in liquid crystal media.
Resumo:
Capacity region for two-user Gaussian Broadcast Channels (GBC) is well known with the optimal input being Gaussian. In this paper we explore the capacity region for GBC when the users' symbols are taken from finite complex alphabets (like M-QAM, M-PSK). When the alphabets for both the users are the same we show that rotation of one of the alphabets enlarges the capacity region. We arrive at an optimal angle of rotation by simulation. The effect of rotation on the capacity region at different SNRs is also studied using simulation results. Using the setup of Fading Broadcast Channel (FBC) given by [Li and Goldsmith, 2001], we study the ergodic capacity region with inputs from finite complex alphabets. It is seen that, using the procedure for optimum power allocation obtained in [Li and Goldsmith, 2001] for Gaussian inputs, to allocate power to symbols from finite complex alphabets, relative rotation between the alphabets does not improve the capacity region. Simulation results for a modified heuristic power allocation procedure for finite-constellation case, show that Constellation Constrained capacity region enlarges with rotation.
Resumo:
Global dynamo simulations solving the equations of magnetohydrodynamics (MHD) have been a tool of astrophysicists who try to understand the magnetism of the Sun for several decades now. During recent years many fundamental issues in dynamo theory have been studied in detail by means of local numerical simulations that simplify the problem and allow the study of physical effects in isolation. Global simulations, however, continue to suffer from the age-old problem of too low spatial resolution, leading to much lower Reynolds numbers and scale separation than in the Sun. Reproducing the internal rotation of the Sun, which plays a crucual role in the dynamo process, has also turned out to be a very difficult problem. In the present paper the current status of global dynamo simulations of the Sun is reviewed. Emphasis is put on efforts to understand how the large-scale magnetic fields, i.e. whose length scale is greater than the scale of turbulence, are generated in the Sun. Some lessons from mean-field theory and local simulations are reviewed and their possible implications to the global models are discussed. Possible remedies to some of the current issues of the solar simulations are put forward.
Resumo:
Brachial plexus birth injury (BPBI) is caused by stretching, tearing or avulsion of the C5-C8 or Th1 nerve roots during delivery. Foetal-maternal disproportion is the main reason for BPBI. The goal of this study was to find out the incidence of posterior subluxation of the humeral head during first year of life in BPBI and optimal timing of the ultrasonographic screening of the glenohumeral joint. The glenohumeral congruity and posterior subluxation of the humeral head associated to muscle atrophy were assessed and surgical treatment of the shoulder girdle as well as muscle changes in elbow flexion contracture were evaluated. The prospective, population based part of the study included all neonates born in Helsinki area during years 2003-2006. Patients with BPBI sent to the Hospital for Children and Adolescents because of decreased external rotation, internal rotation contracture or deformation of the glenohumeral joint as well as patients with elbow flexion contracture were also included in this prospective study. The incidence of BPBI was calculated to be 3.1/1000 newborns in Helsinki area. About 80% of the patients with BPBI recover totally during the follow-up within the first year of life. Permanent plexus injury at the age of one year was noted in 20% of the patients (0.64/1000 newborns). Muscle imbalance resulted in sonographically detected posterior subluxation in one third of the patients with permanent BPBI. If muscle imbalance and posterior subluxation are left untreated bony deformities will develop. All patients with internal rotation contracture of the glenohumeral joint presented muscle atrophy of the rotator cuff muscles. Especially subscapular and infraspinous muscles were affected. A correlation was found particularly between greatest thickness of subscapular muscle and subluxation of the humeral head, degree of glenoid retroversion, as well as amount of internal rotation contracture. Supinator muscle atrophy was evident among all the studied patients with elbow flexion contracture. Brachial muscle pathology seemed to be an important factor for elbow flexion contracture in BPBI. Residual dysfunction of the upper extremity may require operative treatment such as tendon lengthening, tendon transfers, relocation of the humeral head or osteotomy of the humerus. Relocation of the humeral head improved the glenohumeral congruency among patients under 5 years of age. Functional improvement without remodeling of the glenohumeral joint was achieved by other reconstructive procedures. In conclusion: Shoulder screening by US should be done to all patients with permanent BPBI at the age of 3 and 6 months. Especially atrophy of the subscapular muscle correlates with glenohumeral deformity and posterior subluxation of the humeral head, which has not been reported in previous studies. Permanent muscle changes are the main reason for diminished range of motion of the elbow and forearm. Relocation of the humeral head, when needed, should be performed under the age of 5 years.
Resumo:
The oxidative metabolic potential of Setaria digitata, a filarial parasite found in the intraperitoneal cavity of cattle, was investigated. These worms showed active wriggling movements which were not affected by respiratory poisons such as cyanide, rotenone and malonate. They also possessed cyanide-insensitive and glucose-independent oxygen consumption pathways. By differential centrifugation of sucrose homogenates, a fraction containing mitochondria-like particles was obtained in which the activity of the marker enzyme, succinate dehydrogenase, was recovered. This fraction catalysed succinate- and NADH-dependent reduction of both cytochrome c and dyes. Oxygen uptake found with succinate, NADH and ascorbate as substrates was not sensitive to cyanide. Cytochromes could not be detected in either this fraction or homogenates of the worms. H2O2 generation with a number of substrates and lipid peroxidation by measuring malondialdehyde formed as well as by accompanying oxygen uptake were demonstrated in the mitochondria-like particles. A lipid quinone, possibly with a short side chain and related to ubiquinone, was detected in the worms. The results suggested the existence of two cyanide-insensitive oxygen-consuming reactions in Setaria: one respiratory substrate-independent lipid peroxidation, and a second substrate-dependent reaction that requires an auto-oxidizable quinone but not a cytochrome system.
Resumo:
The utilization of mixtures of glucose and sucrose at nonlimiting concentrations was studied in batch cultures of two common thermophilic fungi, Thermomyces lanuginosus and Penicilium duponti. The sucrose-utilizing enzymes (sucrose permease and invertase) in both fungi were inducible. Both sugars were used concurrently,regardless of their relative proportion in the mixture. At the optimal growth temperature (50C), T.lanuginosus utilized sucrose earlier than it did glucose, but at a suboptimal growth temperature (30°C) the two sugars were utilized at nearly comparable rates. The coutilization of the two sugars was most likely possible because (i) invertase was insensitive to catabolite repression by glucose, (ii) the activity and affinity of the glucose transport system were lowered when sucrose was included in the growth medium, and (iii) the activity of the glucose uptake system was also subject to repression by high concentrations of glucose itself. The concurrent utilization of the available carbon sources by thermophilic fungi might be an adaptive strategy for opportunistic growth in nature under conditions of low nutrient availability and thermal fluctuations in the environment.
Resumo:
A continuum model based on the critical state theory of soil mechanics is used to generate stress and density profiles, and to compute discharge velocities for the plane flow of cohesionless materials. Two types of yield loci are employed, namely, a yield locus with a corner, and a smooth yield locus. The yield locus with a corner leads to computational difficulties. For the smooth yield locus, results are found to be relatively insensitive to the shape of the yield locus, the location of the upper traction-free surface and the density specified on this surface. This insensitivity arises from the existence of asymptotic stress and density fields, to which the solution tends to converge on moving down the hopper. Numerical and approximate analytical solutions are obtained for these fields and the latter is used to derive an expression for the discharge velocity. This relation predicts discharge velocities to within 13% of the exact (numerical) values. While the assumption of incompressibility has been frequently used in the literature, it is shown here that in some cases, this leads to discharge velocities which are significantly higher than those obtained by the incorporation of density variation.
Resumo:
The occurrence of occupational chronic solvent encephalopathy (CSE) seems to decrease, but still every year reveals new cases. To prevent CSE and early retirement of solvent-exposed workers, actions should focus on early CSE detection and diagnosis. Identifying the work tasks and solvent exposure associated with high risk for CSE is crucial. Clinical and exposure data of all the 128 cases diagnosed with CSE as an occupational disease in Finland during 1995-2007 was collected from the patient records at the Finnish Institute of Occupational Health (FIOH) in Helsinki. The data on the number of exposed workers in Finland were gathered from the Finnish Job-exposure Matrix (FINJEM) and the number of employed from the national workforce survey. We analyzed the work tasks and solvent exposure of CSE patients and the findings in brain magnetic resonance imaging (MRI), quantitative electroencephalography (QEEG), and event-related potentials (ERP). The annual number of new cases diminished from 18 to 3, and the incidence of CSE decreased from 8.6 to 1.2 / million employed per year. The highest incidence of CSE was in workers with their main exposure to aromatic hydrocarbons; during 1995-2006 the incidence decreased from 1.2 to 0.3 / 1 000 exposed workers per year. The work tasks with the highest incidence of CSE were floor layers and lacquerers, wooden surface finishers, and industrial, metal, or car painters. Among 71 CSE patients, brain MRI revealed atrophy or white matter hyperintensities or both in 38% of the cases. Atrophy which was associated with duration of exposure was most frequently located in the cerebellum and in the frontal or parietal brain areas. QEEG in a group of 47 patients revealed increased power of the theta band in the frontal brain area. In a group of 86 patients, the P300 amplitude of auditory ERP was decreased, but at individual level, all the amplitude values were classified as normal. In 11 CSE patients and 13 age-matched controls, ERP elicited by a multimodal paradigm including an auditory, a visual detection, and a recognition memory task under single and dual-task conditions corroborated the decrease of auditory P300 amplitude in CSE patients in single-task condition. In dual-task conditions, the auditory P300 component was, more often in patients than in controls, unrecognizable. Due to the paucity and non-specificity of the findings, brain MRI serves mainly for differential diagnostics in CSE. QEEG and auditory P300 are insensitive at individual level and not useful in the clinical diagnostics of CSE. A multimodal ERP paradigm may, however, provide a more sensitive method to diagnose slight cognitive disturbances such as CSE.
Resumo:
We present here the detailed results of X-ray diffraction from single quasicrystals of Al6CuLi3. X-ray precession photographs taken down the two-, three- and five-fold axes along with rotation and zero-level Weissenberg photographs are shown. Preliminary analysis of the diffraction data rules out the twin hypothesis.
Resumo:
We investigate the effects of new physics scenarios containing a high mass vector resonance on top pair production at the LHC, using the polarization of the produced top. In particular we use kinematic distributions of the secondary lepton coming from top decay, which depends on top polarization, as it has been shown that the angular distribution of the decay lepton is insensitive to the anomalous tbW vertex and hence is a pure probe of new physics in top quark production. Spin sensitive variables involving the decay lepton are used to reconstruct the top polarization. Some sensitivity is found for the new couplings of the top.
Resumo:
Paraserianthes falcataria is a very fast growing, light wood tree species, that has recently gained wide interest in Indonesia for industrial wood processing. At the moment the P. falcataria plantations managed by smallholders are lacking predefined management programmes for commercial wood production. The general objective of this study was to model the growth and yield of Paraserianthes falcataria stands managed by smallholders in Ciamis, West Java, Indonesia and to develop management scenarios for different production objectives. In total 106 circular sample plots with over 2300 P. falcataria trees were assessed on smallholder plantation inventory. In addition, information on market prices of P. falcataria wood was collected through rapid appraisals among industries. A tree growth model based on Chapman-Richards function was developed on three different site qualities and the stand management scenarios were developed under three management objectives: (1) low initial stand density with low intensity stand management, (2) high initial stand density with medium intensity of intervention, (3) high initial stand density and strong intensity of silvicultural interventions, repeated more than once. In general, the 9 recommended scenarios have rotation ages varying from 4 to 12 years, planting densities from 4x4 meters (625 trees ha-1) to 3x2 meters (1666 trees ha-1) and thinnings at intensities of removing 30 to 60 % of the standing trees. The highest annual income would be generated on high-quality with a scenario with initial planting density 3x2 m (1666 trees ha-1) one thinning at intensity of removing 55 % of the standing trees at the age of 2 years and clear cut at the age of 4 years.
Resumo:
The profitability of fast-growing trees was investigated in the northeastern and eastern provinces of Thailand. The financial, economic, and tentative environmental-economic profitability was determined separately for three fast-growing plantation tree species and for three categories of plantation managers: the private industry, the state (the Royal Forest Department) and the farmers. Fast-growing tree crops were also compared with teak (Tectona grandis), a traditional medium or long rotation species, and Para rubber (Hevea brasiliensis) which presently is the most common cultivated tree in Thailand. The optimal rotation for Eucalyptus camaldulensis pulpwood production was eight years. This was the most profitable species in pulpwood production. In sawlog production Acacia mangium and Melia azedarach showed a better financial profitability. Para rubber was more profitable and teak less profitable than the three fast-growing species. The economic profitability was higher than the financial one, and the tentative environmental-economic profitability was slightly higher than the economic profitability. The profitability of tree growing is sensitive to plantation yields and labour cost changes and especially to wood prices. Management options which aim at pulpwood production are more sensitive to input or output changes than those options which include sawlog production. There is an urgent need to improve the growth and yield data and to study the environmental impacts of tree plantations for all species and plantation types.
Resumo:
From a detailed re-examination of results in the literature, the effects of microstructure sizes, namely interlamellar spacing, pearlitic colony size and the prior austentitic grain size on the thresholds for fatigue crack growth (ΔKth) and crack closure (Kcl, th) have been illustrated. It is shown that while interlamellar spacing explicitly controls yield strength, a similar effect on ΔKth cannot be expected. On the other hand, the pearlitic colony size is shown to strongly influence ΔKth and Kcl, th through the deflection and retardation of cracks at colony boundaries. Consequently, an increase in ΔKth and Kcl, th with colony size has been found. The development of a theoretical model to illustrate the effects of colony size, shear flow stress in the slip band and macroscopic yield strength on Kcl, th and ΔKth is presented. the model assumes colony boundaries as potential sites for slip band pile-up formation and subsequent crack deflection finally leading to zig-zag crack growth. Using the concepts of roughness induced crack closure, the magnitude of Kcl, th is quantified as a function of colony size. In deriving the model, the flow stress in the slip band has been considered to represent the work hardened state in pearlite. Comparison of the theoretically predicted trend with the experimental data demonstrates very good agreement. Further, the intrinsic or closure free component of the fatigue threshold, ΔKeff, th is found to be insensitive to colony size and interlamellar spacing. Using a criterion for intrinsic fatigue threshold which considers the attainment of a critical fracture stress over a characteristic distance corresponding to interlamellar spacing, ΔKth values at high R values can be estimated with reasonable accuracy. The magnitude of ΔKth as a function of colony size is then obtained by summing up the average value of experimentally obtained ΔKeff, th values and the predicted Kcl, th values as a function of colony size. Again, very good agreement of the theoretically predicted ΔKth values with those experimentally obtained has been demonstrated.