945 resultados para quasiparticle alignment
Resumo:
The control of semi-crystalline polymers in thin films and in micrometer-sized patterns is attractive for (opto-)electronic applications. Electro-hydrodynamic lithography (EHL) enables the structure formation of organic crystalline materials on the micrometer length scale while at the same time exerting control over crystal orientation. This gives rise to well-defined micro-patterned arrays of uniaxially aligned polymer crystals. This study explores the interplay of EHL structure formation with crystal alignment and studies the mechanisms that give rise to crystal orientation in EHL-generated structures.
Resumo:
A scalable multi-channel optical regenerative bus architecture based on the use of polymer waveguides is presented for the first time. The architecture offers high-speed interconnection between electrical cards allowing regenerative bus extension with multiple segments and therefore connection of an arbitrary number of cards onto the bus. In a proof-ofprinciple demonstration, a 4-channel 3-card polymeric bus module is designed and fabricated on standard FR4 substrates. Low insertion losses (≤ -15 dB) and low crosstalk values (< -30 dB) are achieved for the fabricated samples while better than ± 6 μm -1 dB alignment tolerances are obtained. 10 Gb/s data communication with a bit-error-rate (BER) lower than 10-12 is demonstrated for the first time between card interfaces on two different bus modules using a prototype 3R regenerator. © 2012 Optical Society of America.
Resumo:
In this paper a method to incorporate linguistic information regarding single-word and compound verbs is proposed, as a first step towards an SMT model based on linguistically-classified phrases. By substituting these verb structures by the base form of the head verb, we achieve a better statistical word alignment performance, and are able to better estimate the translation model and generalize to unseen verb forms during translation. Preliminary experiments for the English - Spanish language pair are performed, and future research lines are detailed. © 2005 Association for Computational Linguistics.
Resumo:
Herein we present an inexpensive facile wet-chemistry-free approach to the transfer of chemical vapour-deposited multiwalled carbon nanotubes to flexible transparent polymer substrates in a single-step process. By controlling the nanotube length, we demonstrate accurate control over the electrical conductivity and optical transparency of the transferred thin films. Uniaxial strains of up to 140% induced only minor reductions in sample conductivity, opening up a number of applications in stretchable electronics. Nanotube alignment offers enhanced functionality for applications such as polarisation selective electrodes and flexible supercapacitor substrates. A capacitance of 17F/g was determined for supercapacitors fabricated from the reported dry-transferred MWCNTs with the corresponding cyclic voltagrams showing a clear dependence on nanotube length. © 2012 Matthew Cole et al.
Resumo:
Recent development of solution processable organic semiconductors delineates the emergence of a new generation of air-stable, high performance p- and n-type materials. This makes it indeed possible for printed organic complementary circuits (CMOS) to be used in real applications. The main technical bottleneck for organic CMOS to be adopted as the next generation organic integrated circuit is how to deposit and pattern both p- and n-type semiconductor materials with high resolutions at the same time. It represents a significant technical challenge, especially if it can be done for multiple layers without mask alignment. In this paper, we propose a one-step self-aligned fabrication process which allows the deposition and high resolution patterning of functional layers for both p- and n-channel thin film transistors (TFTs) simultaneously. All the dimensional information of the device components is featured on a single imprinting stamp, and the TFT-channel geometry, electrodes with different work functions, p- and n-type semiconductors and effective gate dimensions can all be accurately defined by one-step imprinting and the subsequent pattern transfer process. As an example, we have demonstrated an organic complementary inverter fabricated by 3D imprinting in combination with inkjet printing and the measured electrical characteristics have validated the feasibility of the novel technique. © 2012 Elsevier B.V. All rights reserved.
Resumo:
Matrix anisotropy is important for long term in vivo functionality. However, it is not fully understood how to guide matrix anisotropy in vitro. Experiments suggest actin-mediated cell traction contributes. Although F-actin in 2D displays a stretch-avoidance response, 3D data are lacking. We questioned how cyclic stretch influences F-actin and collagen orientation in 3D. Small-scale cell-populated fibrous tissues were statically constrained and/or cyclically stretched with or without biochemical agents. A rectangular array of silicone posts attached to flexible membranes constrained a mixture of cells, collagen I and matrigel. F-actin orientation was quantified using fiber-tracking software, fitted using a bi-model distribution function. F-actin was biaxially distributed with static constraint. Surprisingly, uniaxial cyclic stretch, only induced a strong stretch-avoidance response (alignment perpendicular to stretching) at tissue surfaces and not in the core. Surface alignment was absent when a ROCK-inhibitor was added, but also when tissues were only statically constrained. Stretch-avoidance was also observed in the tissue core upon MMP1-induced matrix perturbation. Further, a strong stretch-avoidance response was obtained for F-actin and collagen, for immediate cyclic stretching, i.e. stretching before polymerization of the collagen. Results suggest that F-actin stress-fibers avoid cyclic stretch in 3D, unless collagen contact guidance dictates otherwise.
Resumo:
The Internet has enabled the creation of a growing number of large-scale knowledge bases in a variety of domains containing complementary information. Tools for automatically aligning these knowledge bases would make it possible to unify many sources of structured knowledge and answer complex queries. However, the efficient alignment of large-scale knowledge bases still poses a considerable challenge. Here, we present Simple Greedy Matching (SiGMa), a simple algorithm for aligning knowledge bases with millions of entities and facts. SiGMa is an iterative propagation algorithm which leverages both the structural information from the relationship graph as well as flexible similarity measures between entity properties in a greedy local search, thus making it scalable. Despite its greedy nature, our experiments indicate that SiGMa can efficiently match some of the world's largest knowledge bases with high precision. We provide additional experiments on benchmark datasets which demonstrate that SiGMa can outperform state-of-the-art approaches both in accuracy and efficiency.
Resumo:
Mixtures of two proprietary low molar mass organosiloxane liquid crystals were studied in order to improve their alignment and optimize their electro-optic properties for telecommunication applications. Over a certain concentration range, mixtures exhibited an isotropic-chiral smectic A-chiral smectic C (Iso-SmA*-SmC*) phase sequence leading to exceptionally good alignment. At room temperature, the spontaneous polarization of these samples was reduced from 225 nC cm -2 in the pure SmC* liquid crystal to as low as 75 nC cm -2 in the mixture. Within this concentration range, the ferroelectric tilt angle could be varied between 35° and 15°, while the rise time decreased by 69.4%. The rise times were < 45 μs for moderate electric fields of ± 10 V μm -1 in the SmC* phase and ∼ 4 μs, independent of electric field, in the SmA* phase. At λ = 1550 nm, these mixtures exhibited very large extinction ratios of {\sim} 60 dB for binary switching in the SmC* phase and ∼ 55 dB continuous variable attenuation in the SmA* phase. © 2012 IEEE.
Resumo:
We report an on-chip integrated ferroelectric liquid crystal (FLC) waveguide structure suitable for telecommunication applications. Single gaps with different widths of 5, 10, and 20 μ m inside individual silica waveguides were filled with an FLC mixture. The waveguide devices operate as a binary switch or an attenuator in a temperature range from 30 °C to 60 °C. The FLC mixture exhibited a good alignment quality in these gaps without alignment layers. A good extinction ratio of up to 33.9 dB and a low insertion loss of <4.3 dB at λ = 1550 nm were observed. Switching times of <100 μs were obtained for the low electric fields applied in this experiment. © 2012 IEEE.
Resumo:
Matrix anisotropy is important for long term in vivo functionality. However, it is not fully understood how to guide matrix anisotropy in vitro. Experiments suggest actin-mediated cell traction contributes. Although F-actin in 2D displays a stretch-avoidance response, 3D data are lacking. We questioned how cyclic stretch influences F-actin and collagen orientation in 3D. Small-scale cell-populated fibrous tissues were statically constrained and/or cyclically stretched with or without biochemical agents. A rectangular array of silicone posts attached to flexible membranes constrained a mixture of cells, collagen I and matrigel. F-actin orientation was quantified using fiber-tracking software, fitted using a bi-model distribution function. F-actin was biaxially distributed with static constraint. Surprisingly, uniaxial cyclic stretch, only induced a strong stretch-avoidance response (alignment perpendicular to stretching) at tissue surfaces and not in the core. Surface alignment was absent when a ROCK-inhibitor was added, but also when tissues were only statically constrained. Stretch-avoidance was also observed in the tissue core upon MMP1-induced matrix perturbation. Further, a strong stretch-avoidance response was obtained for F-actin and collagen, for immediate cyclic stretching, i.e. stretching before polymerization of the collagen. Results suggest that F-actin stress-fibers avoid cyclic stretch in 3D, unless collagen contact guidance dictates otherwise. © 2012 Elsevier Ltd.
Resumo:
The Tandem PiN Schottky (TPS) rectifier features lowly-doped p-layers in both active and termination regions, and is applied in 600-V rating for the first time. In the active region, the Schottky contact is in series connection with a transparent p-layer, leading to a superior forward performance than the conventional diodes. In addition, due to the benefit of moderate hole injection from the p-layer, the TPS offers a better trade-off between the on-state voltage and the switching speed. The active p-layer also helps to stabilise the Schottky contact, and hence the electrical data distributions are more concentrated. Regarding the floating p-layer in the termination region, its purpose is to reduce the peak electric fields, and the TPS demonstrates a high breakdown voltage with a compact termination width, less than 70% of the state-of-the-art devices on the market. Experimental results have shown that the 600-V TPS rectifier has an ultra-low on-state voltage of 0.98 V at 250 A/cm 2, a fast turn-off time of 75 ns by the standard RG1 test (I F=0.5A, I R=1A, and I RR=0.25A) and a breakdown voltage over 720 V. It is noteworthy that the p-layers in the active and termination regions can be formed at no extra cost for the use of self-alignment process. © 2012 IEEE.
Resumo:
Ammonia (NH 3) plasma pretreatment is used to form and temporarily reduce the mobility of Ni, Co, or Fe nanoparticles on boron-doped mono- and poly-crystalline silicon. X-ray photoemission spectroscopy proves that NH 3 plasma nitrides the Si supports during nanoparticle formation which prevents excessive nanoparticle sintering/diffusion into the bulk of Si during carbon nanotube growth by chemical vapour deposition. The nitridation of Si thus leads to nanotube vertical alignment and the growth of nanotube forests by root growth mechanism. © 2012 American Institute of Physics.
Resumo:
In spite of over two decades of intense research, illumination and pose invariance remain prohibitively challenging aspects of face recognition for most practical applications. The objective of this work is to recognize faces using video sequences both for training and recognition input, in a realistic, unconstrained setup in which lighting, pose and user motion pattern have a wide variability and face images are of low resolution. The central contribution is an illumination invariant, which we show to be suitable for recognition from video of loosely constrained head motion. In particular there are three contributions: (i) we show how a photometric model of image formation can be combined with a statistical model of generic face appearance variation to exploit the proposed invariant and generalize in the presence of extreme illumination changes; (ii) we introduce a video sequence re-illumination algorithm to achieve fine alignment of two video sequences; and (iii) we use the smoothness of geodesically local appearance manifold structure and a robust same-identity likelihood to achieve robustness to unseen head poses. We describe a fully automatic recognition system based on the proposed method and an extensive evaluation on 323 individuals and 1474 video sequences with extreme illumination, pose and head motion variation. Our system consistently achieved a nearly perfect recognition rate (over 99.7% on all four databases). © 2012 Elsevier Ltd All rights reserved.
Resumo:
Single grain, (RE)BCO bulk superconductors in large or complicated geometries are required for a variety of potential applications, such as motors and generators and magnetic shielding devices. As a result, top, multi-seeded, melt growth (TMSMG) has been investigated over the past two years in an attempt to enlarge the size of (RE)BCO single grains specifically for such applications. Of these multi-seeding techniques, so-called bridge seeding provides the best alignment of two seeds in a single grain growth process. Here we report, for the first time, the successful growth of YBCO using a special, 45{\deg} - 45{\deg}, arrangement of bridge-seeds. The superconducting properties, including trapped field, of the multi-seeded YBCO grains have been measured for different bridge lengths of the 45{\deg}- 45{\deg} bridge-seeds. The boundaries at the impinging growth front and the growth features of the top, multi-seeded surface and cross-section of the multi-seeded, samples have been analysed using optical microscopy. The results suggest that an impurity-free boundary between the two seeds of each leg of the bridge-seed can form when 45{\deg}- 45{\deg} bridge-seeds are used to enlarge the size of YBCO grains.
Resumo:
A strategy to extract turbulence structures from direct numerical simulation (DNS) data is described along with a systematic analysis of geometry and spatial distribution of the educed structures. A DNS dataset of decaying homogeneous isotropic turbulence at Reynolds number Reλ = 141 is considered. A bandpass filtering procedure is shown to be effective in extracting enstrophy and dissipation structures with their smallest scales matching the filter width, L. The geometry of these educed structures is characterized and classified through the use of two non-dimensional quantities, planarity' and filamentarity', obtained using the Minkowski functionals. The planarity increases gradually by a small amount as L is decreased, and its narrow variation suggests a nearly circular cross-section for the educed structures. The filamentarity increases significantly as L decreases demonstrating that the educed structures become progressively more tubular. An analysis of the preferential alignment between the filtered strain and vorticity fields reveals that vortical structures of a given scale L are most likely to align with the largest extensional strain at a scale 3-5 times larger than L. This is consistent with the classical energy cascade picture, in which vortices of a given scale are stretched by and absorb energy from structures of a somewhat larger scale. The spatial distribution of the educed structures shows that the enstrophy structures at the 5η scale (where η is the Kolmogorov scale) are more concentrated near the ones that are 3-5 times larger, which gives further support to the classical picture. Finally, it is shown by analysing the volume fraction of the educed enstrophy structures that there is a tendency for them to cluster around a larger structure or clusters of larger structures. Copyright © 2012 Cambridge University Press.