905 resultados para quantum wire and quantum dot materials
Resumo:
Recycled materials replacing part of virgin materials in highway applications has shown great benefits to the society and environment. Beneficial use of recycled materials can save landfill places, sparse natural resources, and energy consumed in milling and hauling virgin materials. Low price of recycled materials is favorable to cost-saving in pavement projects. Considering the availability of recycled materials in the State of Maryland (MD), four abundant recycled materials, recycled concrete aggregate (RCA), recycled asphalt pavement (RAP), foundry sand (FS), and dredged materials (DM), were studied. A survey was conducted to collect the information of current usage of the four recycled materials in States’ Department of Transportation (DOTs). Based on literature review, mechanical and environmental properties, recommendations, and suggested test standards were investigated separately for the four recycled materials in different applications. Constrains in using these materials were further studied in order to provide recommendations for the development of related MD specifications. To measure social and environmental benefits from using recycled materials, life-cycle assessment was carried out with life-cycle analysis (LCA) program, PaLATE, and green highway rating system, BEST-in-Highway. The survey results indicated the wide use of RAP and RCA in hot mix asphalt (HMA) and graded aggregate base (GAB) respectively, while FS and DM are less used in field. Environmental concerns are less, but the possibly low quality and some adverse mechanical characteristics may hinder the widely use of these recycled materials. Technical documents and current specifications provided by State DOTs are good references to the usage of these materials in MD. Literature review showed consistent results with the survey. Studies from experimental research or site tests showed satisfactory performance of these materials in highway applications, when the substitution rate, gradation, temperature, moisture, or usage of additives, etc. meet some requirements. The results from LCA revealed significant cost savings in using recycled materials. Energy and water consumption, gas emission, and hazardous waste generation generally showed reductions to some degree. Use of new recycled technologies will contribute to more sustainable highways.
Resumo:
The atomic-level structure and chemistry of materials ultimately dictate their observed macroscopic properties and behavior. As such, an intimate understanding of these characteristics allows for better materials engineering and improvements in the resulting devices. In our work, two material systems were investigated using advanced electron and ion microscopy techniques, relating the measured nanoscale traits to overall device performance. First, transmission electron microscopy and electron energy loss spectroscopy (TEM-EELS) were used to analyze interfacial states at the semiconductor/oxide interface in wide bandgap SiC microelectronics. This interface contains defects that significantly diminish SiC device performance, and their fundamental nature remains generally unresolved. The impacts of various microfabrication techniques were explored, examining both current commercial and next-generation processing strategies. In further investigations, machine learning techniques were applied to the EELS data, revealing previously hidden Si, C, and O bonding states at the interface, which help explain the origins of mobility enhancement in SiC devices. Finally, the impacts of SiC bias temperature stressing on the interfacial region were explored. In the second system, focused ion beam/scanning electron microscopy (FIB/SEM) was used to reconstruct 3D models of solid oxide fuel cell (SOFC) cathodes. Since the specific degradation mechanisms of SOFC cathodes are poorly understood, FIB/SEM and TEM were used to analyze and quantify changes in the microstructure during performance degradation. Novel strategies for microstructure calculation from FIB-nanotomography data were developed and applied to LSM-YSZ and LSCF-GDC composite cathodes, aged with environmental contaminants to promote degradation. In LSM-YSZ, migration of both La and Mn cations to the grain boundaries of YSZ was observed using TEM-EELS. Few substantial changes however, were observed in the overall microstructure of the cells, correlating with a lack of performance degradation induced by the H2O. Using similar strategies, a series of LSCF-GDC cathodes were analyzed, aged in H2O, CO2, and Cr-vapor environments. FIB/SEM observation revealed considerable formation of secondary phases within these cathodes, and quantifiable modifications of the microstructure. In particular, Cr-poisoning was observed to cause substantial byproduct formation, which was correlated with drastic reductions in cell performance.
Resumo:
The full economic, cultural and environmental value of information produced or funded by the public sector can be realised through enabling greater access to and reuse of the information. To do this effectively it is necessary to describe and implement a policy framework that supports greater access and reuse among a distributed, online network of information suppliers and users. The objective of this study was to identify materials dealing with policies, principles and practices relating to information access and reuse in Australia and in other key jurisdictions internationally. Open Access Policies, Practices and Licensing: A review of the literature in Australia and selected jurisdictions sets out the findings of an extensive review of published materials dealing with policies, practices and legal issues relating to information access and reuse, with a particular focus on materials generated, held or funded by public sector bodies. The report was produced as part of the work program of the project “Enabling Real-Time Information Access in Both Urban and Regional Areas”, established within the Cooperative Research Centre for Spatial Information (CRCSI).
Resumo:
The ‘particle size effect’ and its manifestation in abrasion still attracts considerable debate as to its origins and the ranking of its likely causes. Experiments have been conducted to study the important contribution that the formation of wear debris can have on the progression of wear. The experiments consist of unlubricated (dry) pin-on-disk tests with silicon carbide coated paper of varying particle size, with different pin material, diameter and loads. It has been observed that the influence of debris formation on wear rate is more pronounced for fine abrasives and soft-wearing materials. Consequently, it is proposed that the particle size effect can be explained in terms of geometrical scaling and the evolution of third-body effects with diminishing particle diameter.
Resumo:
Near infrared (NIR), infrared (IR) spectroscopy and X-ray diffraction (XRD) have been applied to halotrichites of the formula FeAl2(SO4)4∙22H2O and Fe2+Fe23+(SO4)4∙22H2O. Comparison of the halotrichites and their starting materials has been used to give a better understanding of the bonding involved in these types of minerals. The vibrational spectroscopy data has shown that Fe2+ oxidises during the formation of halotrichite, no preventative measures were implemented to prevent oxidation, and this has been clearly shown by the position and broadness of electronic bands of transition metals in the NIR spectra (12500 to 7500 cm-1). It is apparent from this region that Fe3+ substitutes for Al3+ in the synthesis of halotrichite. Due to the oxidation of Fe2+ to Fe3+ the halotrichite sample contains a small portion of bilinite. This has been confirmed by XRD, peaks at 9 and 14° 2θ were observed in the halotrichite sample and are identical to the XRD pattern obtained for bilinite. Substitution of aluminium for Fe3+ has resulted in significant changes in the overall infrared and NIR spectral profiles. However, the lower wavenumber regions of the NIR spectra have very similar spectral profiles, which indicate a similar structure to halotrichite has formed for bilinite. This work has shown that iron halotrichites can be synthesised and characterised by infrared and NIR spectroscopy.
Resumo:
Abstract RATIONALE: Previous studies have shown that orexin-1/hypocretin-1 receptors play a role in self-administration and cue-induced reinstatement of food, drug, and ethanol seeking. In the current study, we examined the role of orexin-1/hypocretin-1 receptors in operant self-administration of ethanol and sucrose and in yohimbine-induced reinstatement of ethanol and sucrose seeking. MATERIALS AND METHODS: Rats were trained to self-administer either 10% ethanol or 5% sucrose (30 min/day). The orexin-1 receptor antagonist SB334867 (0, 5, 10, 15, 20 mg/kg, i.p.) was administered 30 min before the operant self-administration sessions. After these experiments, the operant self-administration behaviors were extinguished in both the ethanol and sucrose-trained rats. Upon reaching extinction criteria, SB334867 (0, 5, 10 mg/kg, i.p.) was administered 30 min before yohimbine (0 or 2 mg/kg, i.p.). In a separate experiment, the effect of SB334867 (0, 15, or 20 mg/kg, i.p.) on general locomotor activity was determined using the open-field test. RESULTS: The orexin-1 receptor antagonist, SB334867 (10, 15 and 20 mg/kg) decreased operant self-administration of 10% ethanol but not 5% sucrose self-administration. Furthermore, SB334867 (5 and 10 mg/kg) significantly decreased yohimbine-induced reinstatement of both ethanol and sucrose seeking. SB334867 did not significantly affect locomotor activity measured using the open-field test. CONCLUSIONS: The results suggest that inhibition of OX-1/Hcrt-1 receptors modulates operant ethanol self-administration and also plays a significant role in yohimbine-induced reinstatement of both ethanol and sucrose seeking in rats.
Resumo:
Microwave heating technology is a cost-effective alternative way for heating and curing of used in polymer processing of various alternate materials. The work presented in this paper addresses the attempts made by the authors to study the glass transition temperature and curing of materials such as casting resins R2512, R2515 and laminating resin GPR 2516 in combination with two hardeners ADH 2403 and ADH 2409. The magnetron microwave generator used in this research is operating at a frequency of 2.45 GHz with a hollow rectangular waveguide. During this investigation it has been noted that microwave heated mould materials resulted with higher glass transition temperatures and better microstructure. It also noted that Microwave curing resulted in a shorter curing time to reach the maximum percentage cure. From this study it can be concluded that microwave technology can be efficiently and effectively used to cure new generation alternate polymer materials for manufacture of injection moulds in a rapid and efficient manner. Microwave curing resulted in a shorter curing time to reach the maximum percentage cure.
Resumo:
Purpose. To determine how Developmental Eye Movement (DEM) test results relate to reading eye movement patterns recorded with the Visagraph in visually normal children, and whether DEM results and recorded eye movement patterns relate to standardized reading achievement scores. Methods. Fifty-nine school-age children (age = 9.7 ± 0.6 years) completed the DEM test and had eye movements recorded with the Visagraph III test while reading for comprehension. Monocular visual acuity in each eye and random dot stereoacuity were measured and standardized scores on independently administered reading comprehension tests [reading progress test (RPT)] were obtained. Results. Children with slower DEM horizontal and vertical adjusted times tended to have slower reading rates with the Visagraph (r = -0.547 and -0.414 respectively). Although a significant correlation was also found between the DEM ratio and Visagraph reading rate (r = -0.368), the strength of the relationship was less than that between DEM horizontal adjusted time and reading rate. DEM outcome scores were not significantly associated with RPT scores. When the relative contribution of reading ability (RPT) and DEM scores was accounted for in multivariate analysis, DEM outcomes were not significantly associated with Visagraph reading rate. RPT scores were associated with Visagraph outcomes of duration of fixations (r = -0.403) and calculated reading rate (r = 0.366) but not with DEM outcomes. Conclusions.DEM outcomes can identify children whose Visagraph recorded eye movement patterns show slow reading rates. However, when reading ability is accounted for, DEM outcomes are a poor predictor of reading rate. Visagraph outcomes of duration of fixation and reading rate relate to standardized reading achievement scores; however, DEM results do not. Copyright © 2011 American Academy of Optometry.