998 resultados para public displays


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Expressed sequence tags (ESTs) are a source for microsatellite development. In the present study, EST-derived microsatelltes (EST-SSRs) were generated and characterized in the common carp (Cyprinus carpio) by data mining from updated public EST databases and by subsequent testing for polymorphism. About 5.5% (555) of 10,088 ESTs contain repeat motifs of various types and lengths with CA being the most abundant dinucleotide one. Out of the 60 EST-SSRs for which PCR primers were designed, 25 loci showed polymorphism in a common carp population with the alleles per locus ranging from 3 to 17 (mean 7). The observed (H-O) and expected (HE) heterozygosities of these EST-SSRs were 0.13-1.00 and 0.12-0.91, respectively. Six EST-SSR loci significantly deviated from the Hardy-Weinberg equilibrium (HWE) expectation, and the remaining 19 loci were in HWE. Of the 60 primer sets, the rates of polymorphic EST-SSRs were 42% in common carp, 17% in crucian carp (Carassius auratus), and 5% in silver carp (Hypophthalmichthys molitrix), respectively. These new EST-SSR markers would provide sufficient polymorphism for population genetic studies and genome mapping of the common carp and its closely related fishes. (c) 2007 Published by Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

© 2013 IEEE. This paper reviews the mechanisms underlying visible light detection based on phototransistors fabricated using amorphous oxide semiconductor technology. Although this family of materials is perceived to be optically transparent, the presence of oxygen deficiency defects, such as vacancies, located at subgap states, and their ionization under illumination, gives rise to absorption of blue and green photons. At higher energies, we have the usual band-to-band absorption. In particular, the oxygen defects remain ionized even after illumination ceases, leading to persistent photoconductivity, which can limit the frame-rate of active matrix imaging arrays. However, the persistence in photoconductivity can be overcome through deployment of a gate pulsing scheme enabling realistic frame rates for advanced applications such as sensor-embedded display for touch-free interaction.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanocrystalline Tm3+-doped La2O3 phosphors were prepared through a Pechini-type sol-gel process. X-ray diffraction, field-emission scanning electron microscopy, photoluminescence, and cathodoluminescence spectra were utilized to characterize the synthesized phosphors. Under the excitation of UV light (234 nm) and low-voltage electron beams (1-3 kV), the Tm3+-doped La2O3 phosphors show the characteristic emissions of Tm3+(D-1(2), (1)G(4)-F-3(4), H-3(6) transitions).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

LaGaO3:Sm3+, LaGaO3:Tb3+ and LaGaO3: Sm3+, Tb3+ phosphors were prepared through a Pechini-type sol-gel process. X-Ray diffraction, field emission scanning electron microscopy, photoluminescence (PL), and cathodoluminescence (CL) spectroscopy were utilized to characterize the synthesized phosphors. Under excitation with ultraviolet light (250-254 nm), the LaGaO3: Sm3+, LaGaO3: Tb3+ and LaGaO3: Sm3+, Tb3+ phosphors mainly show the characteristic broadband emission (from 300 to 600 nm with a maximum around 430 nm) of the LaGaO3 host lattice, accompanied by the weak emission of Sm3+ ((4)G(5/2) -> H-6(5/2), H-6(7/2), H-6(9/2) transitions) and/or Tb3+ (D-5(3,4) -> F-7(6,5,4,3) transitions). However, under excitation by low-voltage electron beams (1-3 kV), the LaGaO3: Sm3+, LaGaO3: Tb3+ and LaGaO3: Sm3+, Tb3+ phosphors exhibit exclusively the characteristic emissions of Sm3+ and/or Tb3+ with yellow (Sm3+), blue (Tb3+, with low concentrations) and white (Sm3+ + Tb3+) colors, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Blue, yellow and white light emissive LaOCl:Tm3+, LaOCl:Dy3+ and LaOCl: Tm3+, Dy3+ nanocrystalline phosphors were synthesized through the Pechini-type sol-gel process. X-Ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), photoluminescence (PL) and cathodoluminescence (CL) spectra were used to characterize the samples. Under UV radiation (229 nm) and low-voltage electron beam (0.5-5 kV) excitation, the Tm3+-doped LaOCl phosphor shows a very strong blue emission corresponding to the characteristic transitions of Tm3+ (D-1(2), (1)G(4) -> F-3(4), H-3(6)) with the strongest emission at 458 nm. The cathodoluminescent color of LaOCl:Tm3+ is blue to the naked eye with CIE coordinates of x = 0.1492, y = 0.0684. This phosphor has better CIE coordinates and higher emission intensity than the commercial product Y2SiO5:Ce3+.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanocrystalline LaOCl:Tb3+/Sm3+ phosphors were synthesized by a Pechini-type sol-gel process. Under UV and electron-beam excitation, LaOCl:Tb3+/Sm3+ show the characteristic emission of Tb3+ (D-5(3,4) -> F-7(6), ... (2)) and Sm3+ ((4)G(5/2) -> H-6(5/2),(7/2),(9/2)), respectively. In particular, the cathodoluminescence (CL) color of LaOCl:Tb3+ can be tuned from blue to green by changing Tb3+-doped concentration, and their CL intensities (brightness) are higher than those of commercial products Y2SiO5:Ce3+ and ZnO:Zn, respectively. White CL can be realized by codoping with Tb3+ and Sm3+ in a single-phase LaOCl host. The obtained white light is very close to the standard white light. These phosphors are promising for application in field-emission displays.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

LaInO3: Sm3+, LaInO3: Pr3+ and LaInO3: Tb3+ phosphors were prepared through a Pechini-type sol-gel process. X-ray diffraction, field emission scanning electron microscopy, photoluminescence, and cathodoluminescence (CL) spectra were utilized to characterize the synthesized phosphors. XRD results reveal that the pure LaInO3 phase can also be obtained at 700 degrees C. FE-SEM images indicate that the LaInO3: Sm3+, LaInO3: Pr3+ and LaInO3: Tb3+ phosphors are composed of aggregated spherical particles with sizes around 80-120 nm. Under the excitation of ultraviolet light and low voltage electron beams (1-5 kV), the LaInO3: Sm3+, LaInO3: Pr3+ and LaInO3: Tb3+ phosphors show the characteristic emissions of Sm3+ ((4)G(5/2)-H-6(5/2,7/2,9/2) transitions, yellow), Pr3+ (P-3(0)-H-3(4), P-3(1)-H-3(5), D-1(2)-H-3(4) and P-3(0)-F-3(2) transitions, blue-green) and Tb3+ (D-5(4)-F-7(6.5,4.3) transitions, green) respectively. The corresponding luminescence mechanisms are discussed. These phosphors have potential applications in field emission displays.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanocyrstalline LaAlO3:Sm3+ phosphors were prepared through a Pechini-type sol-gel process. X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), photoluminescence, and cathodoluminescence (CL) spectra were utilized to characterize the synthesized phosphors. XRD results reveal that the sample begins to crystallize at 600 degrees C, and pure LaAlO3 phase can be obtained at 700 degrees C. FE-SEM images indicate that the Sm3+-doped LaAlO3 phosphors are composed of aggregated spherical particles with sizes ranging from 40 to 80 nm. Under the excitation of UV light (245 nm) and low-voltage electron beams (1-3 kV), the Sm3+-doped LaAlO3 phosphors show the characteristic emissions of the Sm3+ ((4)G(5/2)-H-6(5/2), H-6(7/2), H-6(9/2) transitions) with a yellow color. The CL intensity (brightness) of the Sm3+-doped LaAlO3 phosphor is higher than that of the commercial product [Zn(Cd)S:Ag+] (yellow) to some extent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanocrystalline Tm3+-doped LaGaO3 phosphors were prepared through a Pechini-type sol-gel process [M. P. Pechini, U.S. Patent No. 3,330,697 (11 July 1967)]. X-ray diffraction, field emission scanning electron microscopy, photoluminescence, and cathodoluminescence (CL) spectra were utilized to characterize the synthesized phosphors. Under the excitation of ultraviolet light and low voltage electron beams (0.5-3 kV), the Tm3+-doped LaGaO3 phosphors show the characteristic emissions from the LaGaO3 host lattice and the Tm3+ (D-1(2), (1)G(4)-F-3(4), and H-3(6) transitions), respectively. The blue CL of the Tm3+-doped LaGaO3 phosphors, with a dominant wavelength of 458 nm, had better Commission International I'Eclairage chromaticity coordinates (0.1552, 0.0630) and higher emission intensity than the commercial product (Y2SiO5:Ce3+).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

SrIn2O4:Dy3+/Pr3+/Tb3+ white/red/green phosphors were prepared by the Pechini sol-gel process. X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), diffuse reflectance, photoluminescence, cathodoluminescence spectra, and lifetimes were utilized to characterize the samples. XRD reveal that the samples begin to crystallize at 800 degrees C and pure SrIn2O4 phase can be obtained at 900 degrees C. FE-SEM images indicate that the SrIn2O4:Dy3+, SrIn2O4:Pr3+, and SrIn2O4:Tb3+ samples consist of fine and spherical grains with size around 200-400 nm. Under the excitation of ultraviolet light and low-voltage electron beams (1 - 5 kV), the SrIn2O4:Dy3+, SrIn2O4: Pr3+, and SrIn2O4: Tb3+ phosphors show the characteristic emissions of Dy3+ (F-4(9/2) - H-6(15/2) at 492 nm and 4F(9/2) - 6H(13/2) at 581 nm, near white), Pr3+ (P-3(0) - H-3(4) at 493 nm, D-1(2) - H-3(4) at 606 nm, and P-3(0) - H-3(6) at 617 nm, red) and Tb3+ (D-5(4) - F-7(6,5,4,3) transitions dominated by D-5(4) - F-7(5) at 544 nm, green), respectively. All of the luminescence resulted from an efficient energy transfer from the SrIn2O4 host lattice to the doped Dy3+, Pr3+, and Tb3+ ions, and the luminescence mechanisms have been proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanocrystalline Y3Al5O12: Ce3+/Tb3+ ( average crystalline size 30 nm) phosphor layers were coated on non-aggregated, monodisperse and spherical SiO2 particles by the sol-gel method, resulting in the formation of core-shell structured SiO2@Y3Al5O12:Ce3+/Tb3+ particles. X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy, photoluminescence, cathodoluminescence spectra, as well as lifetimes were utilized to characterize the core-shell structured SiO2@Y3Al5O12: Ce3+/Tb3+ phosphor particles. The obtained core-shell structured phosphors consist of well-dispersed submicron spherical particles with a narrow size distribution. The thickness of the Y3Al5O12:Ce3+/Tb3+ shells on the SiO2 cores ( average size about 500 nm, crystalline size about 30 nm) could be easily tailored by varying the number of deposition cycles (100 nm for four deposition cycles). Under the excitation of ultraviolet and low-voltage electron beams (1-3 kV), the core-shell SiO2@Y3Al5O12:Ce3+/ Tb3+ particles show strong yellow-green and green emission corresponding to the 5d-4f emission of Ce3+ and D-5(4)-F-7(J) ( J = 6, 5, 4, 3) emission of Tb3+, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Caln(2)O(4):Dy3+/Pr3+/Tb3+ blue-white/green/green phosphors were prepared by the Pechini sol-gel process. X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), diffuse reflectance, photoluminescence (PL) and cathodoluminescencc (CL) spectra as well as lifetimes were utilized to characterize the samples. The XRD results reveal that the samples begin to crystallize at 800 degrees C 3-1 and pure CaIn2O4 phase can be obtained after annealing at 900 degrees C. The FE-SEM images indicate that the CaIn2O4:Dy3+, CaIn2O4:Pr3+ and CaIn2O4:Tb3+ samples consist of spherical grains with size around 200-400nm. Under the excitation of ultraviolet light and low electron beams (1-5kV), the CaIn2O4:Dy3+, CaIn2O4:Pr3+ and CaIn2O4:Tb3+ phosphors show the characteristic emissions of Dy3+ ((F9/2-H15/2)-F-4-H-6 and (F9/2-H13/2)-F-4-H-6 transitions, blue-white), Pr3+ ((P0-H4)-P-3-H-3, (D2-H4)-D-1-H-3 and (P1-H5)-P-3-H-3 transitions, green) and Tb3+ ((D4-F6,5,4,3)-D-5-F-7 transitions, green), respectively. All the luminescence is resulted from an efficient energy transfer from the CaIn2O4 host lattice to the doped Dy3+ ,Pr3+ and Tb3+ ions, and the corresponding luminescence mechanisms have been proposed.