965 resultados para protein interaction


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The quartz crystal microbalance (QCM) technique has been applied for monitoring the biorecognition of ArtinM lectins at low horseradish peroxidase glycoprotein (HRP) concentrations, using a simple kinetic model based on Langmuir isotherm in previous work.18 The latter approach was consistent with the data at dilute conditions but it fails to explain the small differences existing in the jArtinM and rArtinM due to ligand binding concentration limit. Here we extend this analysis to differentiate sugar-binding event of recombinant (rArtinM) and native (jArtinM) ArtinM lectins beyond dilute conditions. Equivalently, functionalized quartz crystal microbalance with dissipation monitoring (QCM-D) was used as real-time label-free technique but structural-dependent kinetic features of the interaction were detailed by using combined analysis of mass and dissipation factor variation. The stated kinetic model not only was able to predict the diluted conditions but also allowed to differentiate ArtinM avidities. For instance, it was found that rArtinM avidity is higher than jArtinM avidity whereas their conformational flexibility is lower. Additionally, it was possible to monitor the hydration shell of the binding complex with ArtinM lectins under dynamic conditions. Such information is key in understanding and differentiating protein binding avidity, biological functionality, and kinetics. © 2013 American Chemical Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, in vitro cytocompatibility was investigated in the Ti-30Ta alloy after two kinds of surfaces treatments: alkaline and biomimetic treatment. Each condition was evaluated by scanning electron microscopy/energy-dispersive X-ray spectroscopy. Cellular adhesion, viability, protein expression, morphology, and differentiation were evaluated with Bone marrow stromal cells (MSCs) to investigate the short and long-term cellular response by fluorescence microscope imaging and colorimetric assays techniques. Two treatments exhibited similar results with respect to total protein content and enzyme activity as compared with alloy without treatment. However, it was observed improved of the biomineralization, bone matrix formation, enzyme activity, and MSCs functionality after biomimetic treatment. These results indicate that the biomimetic surface treatment has a high potential for enhanced osseointegration. © 2013 Wiley Periodicals, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Quatorze sistemas proteicos, codificados por 15 locos estruturais, foram tipados através de eletroforese horizontal para investigar possíveis associações entre os diferentes fenótipos proteicos e parâmetros de produção em suínos das raças Landrace (N=109), Largo White (N=116) e Duroc (N=57), criadas no sul do Brasil. As associações mais consistentes foram detectadas entre dois sistemas enzimáticos (Fosfogliconato desidrogenase - Pgd e Hemopexina - Hpx) e, pelo menos, um dos quatro parâmetros produtivos considerados. Na raça Duroc foram verificadas associações dos fenótipos de Pgd com o ganho de peso diário (P < 0,01), com a conversão alimentar (P < 0,01) e com o índice de seleção (P < 0,001), enquanto que na Landrace foram detectadas interações significantes apenas com relação à conversão alimentar (P < 0,05). Quanto ao sistema Hpx, foram verificadas associações signifícantes dos fenótipos desta proteína com o ganho de peso (P < 0,05) e com a espessura do toicinho (P < 0,05) entre os porcos Largo White e nos Duroc com a espessura do toicinho (P < 0,01) e com o índice de desempenho (P < 0,05). Uma vez que tais resultados não foram observados em investigações anteriores, outros estudos serão necessários para confirmar estas associações.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two experiments evaluated the influence of supplement composition on ruminal forage disappearance, performance, and physiological responses of Angus x Hereford cattle consuming a low-quality cool-season forage (8.7% CP and 57% TDN). In Exp. 1, 6 rumen-fistulated steers housed in individual pens were assigned to an incomplete 3 x 2 Latin square design containing 2 periods of 11 d each and the following treatments: 1) supplementation with soybean meal (PROT), 2) supplementation with a mixture of cracked corn, soybean meal, and urea (68:22:10 ratio, DM basis; ENER), or 3) no supplementation (CON). Steers were offered meadow foxtail (Alopecurus pratensis L.) hay for ad libitum consumption. Treatments were provided daily at 0.50 and 0.54% of shrunk BW/steer for PROT and ENER, respectively, to ensure that PROT and ENER intakes were isocaloric and isonitrogenous. No treatment effects were detected on rumen disappearance parameters of forage DM (P >= 0.33) and NDF (P >= 0.66). In Exp. 2, 35 pregnant heifers were ranked by initial BW on d -7 of the study, allocated into 12 feedlot pens (4 pens/treatment), and assigned to the same treatments and forage intake regimen as in Exp. 1 for 19 d. Treatments were fed once daily at 1.77 and 1.92 kg of DM/heifer for PROT and ENER, respectively, to achieve the same treatment intake as percent of initial BW used in Exp. 1 (0.50 and 0.54% for PROT and ENER, respectively). No treatment effects (P = 0.17) were detected on forage DMI. Total DMI was greater (P < 0.01) for PROT and ENER compared with CON and similar between PROT and ENER (P = 0.36). Accordingly, ADG was greater (P = 0.01) for PROT compared with CON, tended to be greater for ENER compared with CON (P = 0.08), and was similar between ENER and PROT (P = 0.28). Heifers receiving PROT and ENER had greater mean concentrations of plasma glucose (P = 0.03), insulin (P <= 0.09), IGF-I (P <= 0.04), and progesterone (P = 0.01) compared to CON, whereas ENER and PROT had similar concentrations of these variables (P >= 0.15). A treatment x hour interaction was detected (P < 0.01) for plasma urea N (PUN), given that PUN concentrations increased after supplementation for ENER and PROT (time effect, P < 0.01) but did not change for CON (time effect, P = 0.62). In conclusion, beef cattle consuming low-quality cool-season forages had similar ruminal forage disappearance and intake, performance, and physiological status if offered supplements based on soybean meal or corn at 0.5% of BW.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Acute respiratory infections (ARI) are the leading cause of infant mortality in the world, and human respiratory syncytial virus (HRSV) is one of the main agents of ARI. One of the key targets of the adaptive host immune response is the RSV G-protein, which is responsible for attachment to the host cell. There is evidence that compounds such as flavonoids can inhibit viral infection in vitro. With this in mind, the main purpose of this study was to determine, using computational tools, the potential sites for interactions between G-protein and flavonoids. Results: Our study allowed the recognition of an hRSV G-protein model, as well as a model of the interaction with flavonoids. These models were composed, mainly, of -helix and random coil proteins. The docking process showed that molecular interactions are likely to occur. The flavonoid kaempferol-3-O-α-L-arabinopyranosil-(2 → 1)-α-L-apiofuranoside-7-O-α-L-rhamnopyranoside was selected as a candidate inhibitor. The main forces of the interaction were hydrophobic, hydrogen and electrostatic. Conclusions: The model of G-protein is consistent with literature expectations, since it was mostly composed of random coils (highly glycosylated sites) and -helices (lipid regions), which are common in transmembrane proteins. The docking analysis showed that flavonoids interact with G-protein in an important ectodomain region, addressing experimental studies to these sites. The determination of the G-protein structure is of great importance to elucidate the mechanism of viral infectivity, and the results obtained in this study will allow us to propose mechanisms of cellular recognition and to coordinate further experimental studies in order to discover effective inhibitors of attachment proteins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this experiment was to determine if frequency of protein supplementation impacts physiological responses associated with reproduction in beef cows. Fourteen nonpregnant, nonlactating beef cows were ranked by age and BW and allocated to 3 groups. Groups were assigned to a 3 x 3 Latin square design, containing 3 periods of 21 d and the following treatments: 1) soybean meal supplementation daily (D), 2) soybean meal supplementation 3 times/week (3WK), and 3) soybean meal supplementation once/week (1WK). Within each period, cows were assigned to an estrus synchronization protocol: 100 mu g of GnRH + controlled internal drug release device (CIDR) containing 1.38 g of progesterone (P-4) on d 1, 25 mg of PGF(2 alpha) on d 8, and CIDR removal + 100 mu g of GnRH on d 11. Grass-seed straw was offered for ad libitum consumption. Soybean meal was individually supplemented at a daily rate of 1 kg/cow (as-fed basis). Moreover, 3WK was supplemented on d 0, 2, 4, 7, 9, 11, 14, 16, and 18 whereas 1WK was supplemented on d 4, 11, and 18. Blood samples were collected from 0 (before) to 72 h after supplementation on d 11 and 18 and analyzed for plasma urea-N (PUN). Samples collected from 0 to 12 h were also analyzed for plasma glucose, insulin, and P-4 (d 18 only). Uterine flushing fluid was collected concurrently with blood sampling at 28 h for pH evaluation. Liver biopsies were performed concurrently with blood sampling at 0, 4, and 28 h and analyzed for mRNA expression of carbamoyl phosphate synthetase I (CPS-I; h 28) and CYP2C19 and CYP3A4 (h 0 and 4 on d 18). Plasma urea-N concentrations were greater (P < 0.01) for 1WK vs. 3WK from 20 to 72 h and greater (P < 0.01) for 1WK vs. D from 16 to 48 h and at 72 h after supplementation (treatment x hour interaction, P < 0.01). Moreover, PUN concentrations peaked at 28 h after supplementation for 3WK and 1WK (P < 0.01) and were greater (P < 0.01) at this time for 1WK vs. 3WK and D and for 3WK vs. D. Expression of CPS-I was greater (P < 0.01) for 1WK vs. D and 3WK. Uterine flushing pH tended (P <= 0.10) to be greater for 1WK vs. 3WK and D. No treatment effects were detected (P >= 0.15) on expression of CYP2C19 and CYP3A4, plasma glucose, and P-4 concentrations, whereas plasma insulin concentrations were greater (P <= 0.03) in D and 3WK vs. 1WK. Hence, decreasing frequency of protein supplementation did not reduce uterine flushing pH or plasma P-4 concentrations, which are known to impact reproduction in beef cows.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To maintain euglycemia in healthy organisms, hepatic glucose production is increased during fasting and decreased during the postprandial period. This whole process is supported by insulin levels. These responses are associated with the insulin signaling pathway and the reduction in the activity of key gluconeogenic enzymes, resulting in a decrease of hepatic glucose production. On the other hand, defects in the liver insulin signaling pathway might promote inadequate suppression of gluconeogenesis, leading to hyperglycemia during fasting and after meals. The hepatocyte nuclear factor 4, the transcription cofactor PGC1-α, and the transcription factor Foxo1 have fundamental roles in regulating gluconeogenesis. The loss of insulin action is associated with the production of pro-inflammatory biomolecules in obesity conditions. Among the molecular mechanisms involved, we emphasize in this review the participation of TRB3 protein (a mammalian homolog of Drosophila tribbles), which is able to inhibit Akt activity and, thereby, maintain Foxo1 activity in the nucleus of hepatocytes, inducing hyperglycemia. In contrast, physical exercise has been shown as an important tool to reduce insulin resistance in the liver by reducing the inflammatory process, including the inhibition of TRB3 and, therefore, suppressing gluconeogenesis. The understanding of these new mechanisms by which physical exercise regulates glucose homeostasis has critical importance for the understanding and prevention of diabetes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During ethanol production, starch is the primary nutrient fermented and the remaining byproducts are excellent sources of fiber and protein. In addition, inclusion of byproducts in finishing diets may reduce the incidence of acidosis. As a result, roughage level and quality could potentially be reduced in finishing diets containing byproducts. Three experiments were conducted to examine the effects of roughage and wet corn gluten feed (WCGF) in finishing cattle diets containing corn distillers grains plus solubles. Cattle fed finishing diets containing wet distillers grains plus solubles (WDGS) with no roughage had decreased DMI and ADG compared to cattle fed roughage. Within roughage level, ADG was similar for cattle fed alfalfa hay, corn silage or corn stalks when included on an equal NDF basis. Apparent total tract digestibility of OM, NDF, and CP linearly decreased and ruminal pH variables increased linearly due to increasing roughage levels. Roughage sources can be exchanged on an equal NDF basis in beef finishing diets containing 30% WDGS (DM basis). In finishing diets containing modified distillers grains plus solubles (MDGS), DMI linearly increased due to increasing roughage levels but ADG responded quadratically and was lowest for cattle fed diets without roughage. There was also a quadratic response for DMI and ADG due to WCGF inclusion level. Gain:feed decreased linearly with increasing roughage and WCGF inclusion levels. Feeding 15% WCGF resulted in similar cattle performance and carcass traits to cattle fed no WCGF in diets containing 30% MDGS, but cattle fed diets with 60% total byproduct inclusion made up of 30% WCGF and 30% MDGS had reduced performance (DM basis). Additionally, reducing corn silage inclusion level to 7.5% resulted in similar finishing cattle performance and carcass traits to cattle fed 15% corn silage in diets containing 30% MDGS with or without inclusion of WCGF. Elimination of roughage in diets containing either WDGS or MDGS resulted in negative impacts on finishing cattle performance, ruminal metabolism, and carcass traits.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The giant extracellular hemoglobin of Glossoscolex paulistus (HbGp) is constituted by approximately 144 subunits containing heme groups with molecular masses in the range of 16-19 kDa forming a monomer (d) and a trimer (abc), and around 36 non-heme structures, named linkers (L). Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF-MS) analysis was performed recently, to obtain directly information on the molecular masses of the different subunits from HbGp in the oxy-form. This technique demonstrated structural similarity between HbGp and the widely studied hemoglobin of Lumbricus terrestris (HbLt). Indeed, two major isoforms (d(1) and d(2)) of identical proportions with masses of 16,355+/-25 and 16,428+/-24 Da, respectively, and two minor isoforms (d(3) and d(4)) with masses around 16.6 kDa were detected for monomer d of HbGp. In the present work, the effects of anionic sodium dodecyl sulfate (SDS) and cationic cethyltrimethyl ammonium chloride (CTAC) on the oligomeric structure of HbGp have been studied by MALDI-TOF-MS in order to evaluate the interaction between ionic surfactants and HbGp. The data obtained with this technique show an effective interaction of cationic surfactant CTAC with the two isoforms of monomer d, d(1) and d(2), both in the whole protein as well as in the pure isolated monomer. The results show that up to 10 molecules of CTAC are bound to each isoform of the monomer. Differently, the mass spectra obtained for SDS-HbGp system showed that the addition of the anionic surfactant SDS does not originate any mass increment of the monomeric subunits, indicating that SDS-HbGp interaction is, probably, significantly less effective as compared to CTAC-HbGp one. The acid pI of the protein around 5.5 is, probably, responsible for this behavior. The results of this work suggest also some interaction of both surfactants with linker chains as well as with trimers, as judged from observed mass increments. Our data are consistent with a recent spectroscopic study showing a strong interaction between CTAC and HbGp at physiological pH [P.S.Santiago, et al, Biochim. Biophys. Acta. 1770 (2007) 506-517.]. (C) 2007 Elsevier B.V. All rights reserved.