997 resultados para protease characterization


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three groups of poly(mannitol citric dicarboxylate) [p(MCD)] copolyesters were synthesized by catalyst-free melt condensation of mannitol with acids. The resulting copolyesters were designated as poly(mannitol citric succinate) [p(MCSu)], poly(mannitol citric adipate) [p(MCA)], poly(mannitol citric sebacate) [p(MCS)]. The polymers were characterized by FTIR, (1)H NMR, and DSC analysis. The synthesized p(MCD) polymers exhibit glass transition temperatures ranging from 16.5 to 58.58 degrees C. The mechanical, degradation properties, and the drug-releasing characteristics of these polymers were investigated. It was observed that the mechanical properties of the p(MCD) polymers cover a wide range with Young's modulus of the polymer varying from 12.25 to 660 MPa. Hydrolytic degradation of all polymers was investigated by incubating polymer discs in PBS and the hydrolytic degradation of p(MCD) polymers followed the order, p(MCSu) > p(MCA) > p(MCS). This was attributed to the number of -CH(2)(units in the dicarboxylic monomers. The release of model drug compounds from the p(MCD) polymer discs was also studied. POLYM. ENG. SCI., 51:2035-2043, 2011. (C) 2011 Society of Plastics Engineers

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study investigates the structural and pharmaceutical properties of different multicomponent crystalline forms of lamotrigine (LTG) with some pharmaceutically acceptable coformers viz. nicotinamide (1), acetamide (2), acetic acid (3), 4-hydroxy-benzoic acid (4) and saccharin (5). The structurally homogeneous phases were characterized in the solid state by DSC/TGA, FT-IR and XRD (powder and single crystal structure analysis) as well as in the solution phase. Forms 1 and 2 were found to be cocrystal hydrate and cocrystal, respectively, while in forms 3, 4 and 5, proton transfer was observed from coformer to drug. The enthalpy of formation of multicomponent crystals from their components was determined from the enthalpy of solution of the cocrystals and the components separately. Higher exothermic values of the enthalpy of formation for molecular complexes 3, 4 and 5 suggest these to be more stable than 1 and 2. The solubility was measured in water as well as in phosphate buffers of varying pH. The salt solvate 3 exhibited the highest solubility of the drug in water as well as in buffers over the pH range 7-3 while the cocrystal hydrate 1 showed the maximum solubility in a buffer of pH 2. A significant lowering of the dosage profile of LTG was observed for 1, 3 and 5 in the animal activity studies on mice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

HCV NS3 protein plays a central role in viral polyprotein processing and RNA replication. We demonstrate that the NS3 protease (NS3(pro)) domain alone can specifically bind to HCV-IRES RNA, predominantly in the SLIV region. The cleavage activity of the NS3 protease domain is reduced upon HCV-RNA binding. More importantly, NS3(pro) binding to the SLIV hinders the interaction of La protein, a cellular IRES-trans acting factor required for HCV IRES-mediated translation, resulting in inhibition of HCV-IRES activity. Although overexpression of both NS3(pro) as well as the full length NS3 protein decreased the level of HCV IRES mediated translation, replication of HCV replicon RNA was enhanced significantly. These observations suggest that the NS3(pro) binding to HCV IRES reduces translation in favor of RNA replication. The competition between the host factor (La) and the viral protein (NS3) for binding to HCV IRES might regulate the molecular switch from translation to replication of HCV.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanoparticles (dia ~ 5 - 7 nm) of Bi0.5X0.5(X=Ca,Sr)MnO3 are prepared by polymer assisted sol-gel method and characterized by various physico-chemical techniques. X-ray diffraction gives evidence for single phasic nature of the materials as well as their structures. Mono dispersed to a large extent, isolated nanoparticles are seen in the transmission electron micrographs. High resolution electron microscopy shows the crystalline nature of the nanoparticles. Superconducting quantum interferometer based magnetic measurements from 10K to 300K show that these nanomanganites retain the charge ordering nature unlike Pr and Nd based nanomanganites. The CO in Bi based manganites is thus found to be very robust consistent with the observation that magnetic field of the order of 130 T are necessary to melt the CO in these compounds. These results are supported by electron magnetic resonance measurements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The reaction of [Cp*TaCl(4)], 1 (Cp* = eta(5)-C(5)Me(5)), with [LiBH(4)center dot THF] at -78 degrees C, followed by thermolysis in the presence of excess [BH(3)center dot THF], results in the formation of the oxatantalaborane cluster [(Cp*Ta)(2)B(4)H(10)O], 2 in moderate yield. Compound 2 is a notable example of an oxatantalaborane cluster where oxygen is contiguously bound to both the metal and boron. Upon availability of 2, a room temperature reaction was performed with [Fe(2)(CO)(9)], which led to the isolation of [(Cp*Ta)(2)B(2)H(4)O{H(2)Fe(2)(CO)(6)BH} ] 3. Compound 3 is an unusual heterometallic boride cluster in which the [Ta(2)Fe(2)] atoms define a butterfly framework with one boron atom lying in a semi-interstitial position. Likewise, the diselenamolybdaborane, [(Cp*Mo)(2)B(4)H(4)Se(2)], 4 was treated with an excess of [Fe(2)(CO)(9)] to afford the heterometallic boride cluster [(Cp*MoSe)(2)Fe(6)(CO)(13)B(2)(BH)(2)], 5. The cluster core of 5 consists of a cubane [Mo(2)Se(2)Fe(2)B(2)] and a tricapped trigonal prism [Fe(6)B(3)] fused together with four atoms held in common between the two subclusters. In the tricapped trigonal prism subunit, one of the boron atoms is completely encapsulated and bonded to six iron and two boron atoms. Compounds 2, 3, and 5 have been characterized by mass spectrometry, IR, (1)H, (11)B, (13)C NMR spectroscopy, and the geometric structures were unequivocally established by crystallographic analysis. The density functional theory calculations yielded geometries that are in close agreement with the observed structures. Furthermore, the calculated (11)B NMR chemical shifts also support the structural characterization of the compounds. Natural bond order analysis and Wiberg bond indices are used to gain insight into the bonding patterns of the observed geometries of 2, 3, and 5.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polyaniline functionalized with imidazole as strategically designed receptor group in its backbone was synthesized for copper binding. The synthesized polymer has been characterized using FTIR, NMR, and UV-Vis spectroscopic techniques. The addition of copper (II) to the polymer distinctly changes the properties such as crystallinity, molecular weight, aggregation, and electronic properties. XRD, DLS, SEM, and four-point probe techniques have been used for study of these changes. It is observed that the secondary ion generated as a result of copper coordination results in the doping of the polyaniline backbone, which enhances the conductivity by one order of magnitude. (C) 2011 Wiley Periodicals, Inc. J Appl Polym Sci 123: 526-534, 2012

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We develop lightweight, multilayer materials composed of alternating layers of poly dimethyl siloxane (PDMS) polymer and vertically aligned carbon nanotube (CNT) arrays, and characterize their mechanical response in compression. The CNT arrays used In the assembly are synthesized with graded mechanical properties along their thickness, and their use enables the creation of multilayer structures with low density (0.12-0.28 g/cm(3)). We test the mechanical response of structures composed of different numbers of CNT layers partially embedded in PDMS polymer, under quasi-static and dynamic loading. The resulting materials exhibit a hierarchical, fibrous structure with unique mechanical properties: They can sustain large compressive deformations (up to similar to 0.8 strain) with a nearly complete recovery and present strain localization in selected sections of the materials. Energy absorption, as determined by the hysteresis observed In stress-strain curves, is found to be at least 3 orders of magnitude larger than that of natural and synthetic cellular materials of comparable density. Conductive bucky paper Is Included within the polymer interlayers. This allows the measurement of resistance variation as a function of applied stress, showing strong correlation with the observed strain localization In compression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The efficiency of track foundation material gradually decreases due to insufficient lateral confinement, ballast fouling, and loss of shear strength of the subsurface soil under cyclic loading. This paper presents characterization of rail track subsurface to identify ballast fouling and subsurface layers shear wave velocity using seismic survey. Seismic surface wave method of multi-channel analysis of surface wave (MASW) has been carried out in the model track and field track for finding out shear wave velocity of the clean and fouled ballast and track subsurface. The shear wave velocity (SWV) of fouled ballast increases with increase in fouling percentage, and reaches a maximum value and then decreases. This character is similar to typical compaction curve of soil, which is used to define optimum and critical fouling percentage (OFP and CFP). Critical fouling percentage of 15 % is noticed for Coal fouled ballast and 25 % is noticed for clayey sand fouled ballast. Coal fouled ballast reaches the OFP and CFP before clayey sand fouled ballast. Fouling of ballast reduces voids in ballast and there by decreases the drainage. Combined plot of permeability and SWV with percentage of fouling shows that after critical fouling point drainage condition of fouled ballast goes below acceptable limit. Shear wave velocities are measured in the selected location in the Wollongong field track by carrying out similar seismic survey. In-situ samples were collected and degrees of fouling were measured. Field SWV values are more than that of the model track SWV values for the same degree of fouling, which might be due to sleeper's confinement. This article also highlights the ballast gradation widely followed in different countries and presents the comparison of Indian ballast gradation with international gradation standards. Indian ballast contains a coarser particle size when compared to other countries. The upper limit of Indian gradation curve matches with lower limit of ballast gradation curves of America and Australia. The ballast gradation followed by Indian railways is poorly graded and more favorable for the drainage conditions. Indian ballast engineering needs extensive research to improve presents track conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spherical shaped ZnO nanopowders (14-50 nm) were synthesized by a low temperature solution combustion method in a short time <5 min. Rietveld analysis show that ZnO has hexagonal wurtzite structure with lattice constants a = 3.2511(1) angstrom, c = 5.2076(2) angstrom, unit cell volume (V) = 47.66(5) (angstrom)(3) and belongs to space group P63mc. SEM micrographs reveal that the particles are spherical in shape and the powders contained several voids and pores. TEM results also confirm spherical shape, with average particle size of 14-50 nm. The values are consistent with the grain sizes measured from Scherrer's method and Williamson-Hall (W-H) plots. A broad UV-vis absorption spectrum was observed at similar to 375 nm which is a characteristic band for the wurtzite hexagonal pure ZnO. The optical energy band gap of 3.24 eV was observed for nanopowder which is slightly lower than that of the bulk ZnO (3.37 eV). The observed Raman peaks at 438 and 588 cm(-1) were attributed to the E(2) (high) and E(1) (LO) modes respectively. The broad band at 564 cm(-1) is due to disorder-activated Raman scattering for the A(1) mode. These bands are associated with the first-order Raman active modes of the ZnO phase. The weak bands observed in the range 750-1000 cm(-1) are due to small defects. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A thermally stable and flexible composite has been synthesized by following a consecutive `two-step', solvent free route. Silicone polymer containing internal hydrides was used as a polymer matrix and mesoporous silica functionalized with allytrimethoxysiloxane was used as a filler material. In the second step, the composite preparation was carried out using the hydrosilylation reaction mediated by `Karastedt' platinum catalyst. The results of the studies suggest that the composites are thermally stable, hydrophobic and flexible and can be potentially used for encapsulating flexible electronic devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A dinuclear organometallic acceptor 4,4'-bis[trans-Pt(PEt(3))(2)(O(3)SCF(3))(ethynyl)]biphenyl (1) containing Pt-ethynyl functionality is synthesized. Multinuclear NMR ((1)H, (31)P, and (13)C), infrared (IR), and electrospray ionization mass spectrometry (ESI-MS) including single-crystal X-ray diffraction analysis established the formation of 1. Equimolar treatment of acceptor 1 separately with three different ``clip'' type ditopic donors (L(a)-L(c)) yielded [2 + 2] self-assembled three metallamacrocycles 2a-2c, respectively. These macrocycles were characterized by various spectroscopic techniques, and their sizes/shapes were obtained through geometry optimization using molecular mechanics universal force field (MMUFF) simulations. Attachment of unsaturated ethynyl functionality to biphenyl building unit helped to make the macrocycles (2a-2c) pi-electron rich and thereby fluorescent in nature. Furthermore, 2c in solution has been examined to be suitable for sensing electron-deficient nitroaromatic like picric acid, which is often considered as a secondary chemical explosive. The fluorescence study of 2c showed a marked quenching of initial emission intensity upon titrating with picric acid (PA), and it exhibited the largest fluorescence quenching response with high selectivity among various other electron deficient aromatic compounds tested.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanocomposites of few-layer graphene with nanoparticles of CdSe and CdS have been synthesized by two different methods, one involving ultrasonication of a mixture of graphene and the chalcogenide nanoparticles, and another involving assembly at the organic-aqueous interface. The nanocomposites have been examined by electron microscopy, electronic absorption and photoluminescence spectroscopies as well as Raman spectroscopy. Electron microscopy reveals that the nanoparticles are dispersed on the graphene surface. Raman spectra show the presence of definitive electronic interaction between the nanoparticles and graphene depending on the capping agent. Photoluminescence spectra are markedly influenced by the interaction of the nanoparticles with the graphene surface, depending on the capping agent.