922 resultados para promise
Resumo:
There are approximately 7000 languages spoken in the world today. This diversity reflects the legacy of thousands of years of cultural evolution. How far back we can trace this history depends largely on the rate at which the different components of language evolve. Rates of lexical evolution are widely thought to impose an upper limit of 6000-10,000 years on reliably identifying language relationships. In contrast, it has been argued that certain structural elements of language are much more stable. Just as biologists use highly conserved genes to uncover the deepest branches in the tree of life, highly stable linguistic features hold the promise of identifying deep relationships between the world's languages. Here, we present the first global network of languages based on this typological information. We evaluate the relative evolutionary rates of both typological and lexical features in the Austronesian and Indo-European language families. The first indications are that typological features evolve at similar rates to basic vocabulary but their evolution is substantially less tree-like. Our results suggest that, while rates of vocabulary change are correlated between the two language families, the rates of evolution of typological features and structural subtypes show no consistent relationship across families.
Resumo:
Diffuse pollution, and the contribution from agriculture in particular, has become increasingly important as pollution from point sources has been addressed by wastewater treatment. Land management approaches, such as construction of field wetlands, provide one group of mitigation options available to farmers. Although field wetlands are widely used for diffuse pollution control in temperate environments worldwide, there is a shortage of evidence for the effectiveness and viability of these mitigation options in the UK. The Mitigation Options for Phosphorus and Sediment Project aims to make recommendations regarding the design and effectiveness of field wetlands for diffuse pollution control in UK landscapes. Ten wetlands have been built on four farms in Cumbria and Leicestershire. This paper focuses on sediment retention within the wetlands, estimated from annual sediment surveys in the first two years, and discusses establishment costs. It is clear that the wetlands are effective in trapping a substantial amount of sediment. Estimates of annual sediment retention suggest higher trapping rates at sandy sites (0.5–6 t ha�1 yr�1), compared to silty sites (0.02–0.4 t ha�1 yr�1) and clay sites (0.01–0.07 t ha�1 yr�1). Establishment costs for the wetlands ranged from £280 to £3100 and depended more on site specific factors, such as fencing and gateways on livestock farms, rather than on wetland size or design. Wetlands with lower trapping rates would also have lower maintenance costs, as dredging would be required less frequently. The results indicate that field wetlands show promise for inclusion in agri-environment schemes, particularly if capital payments can be provided for establishment, to encourage uptake of these multi-functional features.
Resumo:
A series of bis-triazinylphenanthroline ligands (BTPhens) was synthesized by modifying the triazine substituents. It was found that varying these substituents altered the solubilities of the ligands in a number of non-polar solvents. Thus C5-BTPhen showed significantly higher solubility in octanol than C1-BTPhen. The high solubility of C5-BTPhen and its complexes was exploited to facilitate the NMR titration experiments. These experiments shown that the dominant species in solution were the 1:2 complexes [Ln(III)(BTPhen)2], even at high Ln concentrations, and that the relative stability of the 2:1 to 1:1 BTPhen-Ln complexes varied with different lanthanides. C5-BTPhen therefore shows considerable promise for a once-through selective actinide separation process.
Resumo:
An overview is provided of the current understanding of transport in the middle atmosphere. Over the past quarter century this subject has evolved from a basic recognition of the Brewer-Dobson circulation to a detailed appreciation of many key features of transport such as the stratospheric surf zone, mixing barriers and the dynamics of filamentation. Whilst the elegant theoretical framework for middle atmosphere transport that emerged roughly twenty years ago never fulfilled its promise, useful phenomenological models have been developed together with innovative diagnostic methods. These advances were made possible by the advent of plenty of satellite and aircraft observations of long-lived chemical species together with developments in data assimilation and numerical modeling, and have been driven in large measure by the problem of stratospheric ozone depletion. This review is primarily focused on the stratosphere, where both the interest and the knowledge are the greatest, but a few remarks are also made on the mesosphere.
Resumo:
Enterprise Resource Planning is often endorsed as a means to facilitate strategic advantage for businesses. The scarcity of resources is the method by which some businesses maintain their position. However, the ubiquitous trend towards the adoption of Enterprise Resourcing Planning systems coupled with market saturation makes the promise of advantage less compelling. Reported in this paper is a proposed solution based upon semiotic theory that takes a typical Enterprise Resource Planning deployment scenario and shapes it according to the needs of people in post-implementation contexts to leverage strategic advantage in different ways.
Resumo:
Breeding progress in barley yield in the UK is being sustained at a rate in the order of 1% per annum against a background of declining seed sales. Commercial barley breeders are largely concentrating upon the elite local gene pool but with genotypic evidence suggesting that there is still considerable variation between current recommended cultivars, even those produced as half-sibs by the same breeder. Marker Assisted Selection (MAS) protocols could be substituted for conventional selection for a number of major-gene targets but, in the majority of cases, conventional selection is more resource efficient. Results from current QTL mapping studies have not yet identified sufficiently robust and validated targets for UK barley breeders to adopt MAS to assist in the selection of complex traits such as yield and malting quality. Results from multiple population mapping amongst the elite gene pool being utilised by breeders and from association studies of elite germplasm tested as part of the UK recommended list trial process do, however, show some promise.
Resumo:
The Moraceae family is one of the most abundant and ecologically important families in Neotropical rainforests and is very well-represented in Amazonian fossil pollen records. However, difficulty in differentiating palynologically between the genera within this family, or between the Moraceae and Urticaceae families, has limited the amount of palaeoecological information that can be extracted from these records. The aim of this paper is to analyse the morphological properties of pollen from Amazonian species of Moraceae in order to determine whether the pollen taxonomy of this family can be improved. Descriptive and morphometric methods are used to identify and differentiate key pollen types of the Moraceae (mulberry) and Urticaceae (nettle) families which are represented in Amazonian rainforest communities of Noel Kempff Mercado National Park (NKMNP), Northeast Bolivia. We demonstrate that Helicostylis, Brosimum, Pseudolmedia, Sorocea and Pourouma pollen can be identified in tropical pollen assemblages and present digital images of, and a taxonomic key to, the Moraceae pollen types of NKMNP. Indicator species, Maquira coriacea (riparian evergreen forest) and Brosimum gaudichaudii (open woodland and upland savanna communities), also exhibit unique pollen morphologies. The ability to recognise these ecologically important taxa in pollen records provides the potential for much more detailed and reliable Neotropical palaeovegetation reconstructions than have hitherto been possible. In particular, this improved taxonomic resolution holds promise for resolving long-standing controversies over the interpretation of key Amazonian Quaternary pollen records.
Resumo:
Although promise exists for patterns of resting-state blood oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI) brain connectivity to be used as biomarkers of early brain pathology, a full understanding of the nature of the relationship between neural activity and spontaneous fMRI BOLD fluctuations is required before such data can be correctly interpreted. To investigate this issue, we combined electrophysiological recordings of rapid changes in multi-laminar local field potentials from the somatosensory cortex of anaesthetized rats with concurrent two-dimensional optical imaging spectroscopy measurements of resting-state haemodynamics that underlie fluctuations in the BOLD fMRI signal. After neural ‘events’ were identified, their time points served to indicate the start of an epoch in the accompanying haemodynamic fluctuations. Multiple epochs for both neural ‘events’ and the accompanying haemodynamic fluctuations were averaged. We found that the averaged epochs of resting-state haemodynamic fluctuations taken after neural ‘events’ closely resembled the temporal profile of stimulus-evoked cortical haemodynamics. Furthermore, we were able to demonstrate that averaged epochs of resting-state haemodynamic fluctuations resembling the temporal profile of stimulus-evoked haemodynamics could also be found after peaks in neural activity filtered into specific electroencephalographic frequency bands (theta, alpha, beta, and gamma). This technique allows investigation of resting-state neurovascular coupling using methodologies that are directly comparable to that developed for investigating stimulus-evoked neurovascular responses.
Resumo:
Each human body plays host to a microbial population which is both numerically vast (at around 1014 microbial cells) and phenomenally diverse (over 1,000 species). The majority of the microbial species in the gut have not been cultured but the application of culture-independent approaches for high throughput diversity and functionality analysis has allowed characterisation of the diverse microbial phylotypes present in health and disease. Studies in monozygotic twins, showing that these retain highly similar microbiota decades after birth and initial colonisation, are strongly indicative that diversity of the microbiome is host-specific and affected by the genotype. Microbial diversity in the human body is reflected in both richness and evenness. Diversity increases steeply from birth reaching its highest point in early adulthood, before declining in older age. However, in healthy subjects there appears to be a core of microbial phylotypes which remains relatively stable over time. Studies of individuals from diverse geopraphies suggest that clusters of intestinal bacterial groups tend to occur together, constituting ‘enterotypes’. So variation in intestinal microbiota is stratified rather than continuous and there may be a limited number of host/microbial states which respond differently to environmental influences. Exploration of enterotypes and functional groups may provide biomarkers for disease and insights into the potential for new treatments based on manipulation of the microbiome. In health, the microbiota interact with host defences and exist in harmonious homeostasis which can then be disturbed by invading organisms or when ‘carpet bombing’ by antibiotics occurs. In a portion of individuals with infections, the disease will resolve itself without the need for antibiotics and microbial homeostasis with the host’s defences is restored. The administration of probiotics (live microorganisms which when administered in adequate amounts confer a health benefit on the host) represents an artificial way to enhance or stimulate these natural processes. The study of innate mechanisms of antimicrobial defence on the skin, including the production of numerous antimicrobial peptides (AMPs), has shown an important role for skin commensal organisms. These organisms may produce AMPs, and also amplify the innate immune responses to pathogens by activating signalling pathways and processing host produced AMPs. Research continues into how to enhance and manipulate the role of commensal organisms on the skin. The challenges of skin infection (including diseases caused by multiply resistant organisms) and infestations remain considerable. The potential to re-colonise the skin to replace or reduce pathogens, and exploring the relationship between microbiota elsewhere and skin diseases are among a growing list of research targets. Lactobacillus species are among the best known ‘beneficial’ bacterial members of the human microbiota. Of the approximately 120 species known, about 15 are known to occur in the human vagina. These organisms have multiple properties, including the production of lactic acid, hydrogen peroxide and bacteriocins, which render the vagina inhospitable to potential pathogens. Depletion of the of the normal Lactobacillus population and overgrowth of vaginal anaerobes, accompanied by the loss of normal vaginal acidity can lead to bacterial vaginosis – the commonest cause of abnormal vaginal discharge in women. Some vaginal anaerobes are associated with the formation of vaginal biofilms which serve to act as a reservoir of organisms which persists after standard antibiotic therapy of bacterial vaginosis and may help to account for the characteristically high relapse rate in the condition. Administration of Lactobacillus species both vaginally and orally have shown beneficial effects in the treatment of bacterial vaginosis and such treatments have an excellent overall safety record. Candida albicans is a frequent coloniser of human skin and mucosal membranes, and is a normal part of the microbiota in the mouth, gut and vagina. Nevertheless Candida albicans is the most common fungal pathogen worldwide and is a leading cause of serious and often fatal nosocomial infections. What turns this organism from a commensal to a pathogen is a combination of increasing virulence in the organism and predisposing host factors that compromise immunity. There has been considerable research into the use of probiotic Lactobacillus spp. in vaginal candidiasis. Studies in reconstituted human epithelium and monolayer cell cultures have shown that L. rhamnosus GG can protect mucosa from damage caused by Candida albicans, and enhance the immune responses of mucosal surfaces. Such findings offer the promise that the use of such probiotic bacteria could provide new options for antifungal therapy. Studies of changes of the human intestinal microbiota in health and disease are complicated by its size and diversity. The Alimentary Pharmabiotic Centre in Cork (Republic of Ireland) has the mission to ‘mine microbes for mankind’ and its work illustrates the potential benefits of understanding the gut microbiota. Work undertaken at the centre includes: mapping changes in the microbiota with age; studies of the interaction between the microbiota and the gut; potential interactions between the gut microbiota and the central nervous system; the potential for probiotics to act as anti-infectives including through the production of bacteriocins; and the characterisation of interactions between gut microbiota and bile acids which have important roles as signalling molecules and in immunity. The important disease entity where the role of the gut microbiota appears to be central is the Irritable Bowel Syndrome (IBS). IBS patients show evidence of immune activation, impaired gut barrier function and abnormal gut microbiota. Studies with probiotics have shown that these organisms can exert anti-inflammatory effects in inflammatory bowel disease and may strengthen the gut barrier in IBS of the diarrhoea-predominant type. Formal randomised trials of probiotics in IBS show mixed results with limited benefit for some but not all. Studies confirm that administered probiotics can survive and temporarily colonise the gut. They can also stimulate the numbers of other lactic acid bacilli in the gut, and reduce the numbers of pathogens. However consuming live organisms is not the only way to influence gut microbiota. Dietary prebiotics are selectively fermented ingredients that can change the composition and/or activity of the gastrointestinal microbiota in beneficial ways. Dietary components that reach the colon, and are available to influence the microbiota include poorly digestible carbohydrates, such as non-starch polysaccharides, resistant starch, non-digestible oligosaccharides (NDOs) and polyphenols. Mixtures of probiotic and prebiotic ingredients that can selectively stimulate growth or activity of health promoting bacteria have been termed ‘synbiotics’. All of these approaches can influence gut microbial ecology, mainly to increase bifidobacteria and lactobacilli, but metagenomic approaches may reveal wider effects. Characterising how these changes produce physiological benefits may enable broader use of these tactics in health and disease in the future. The current status of probiotic products commercially available worldwide is less than ideal. Prevalent problems include misidentification of ingredient organisms and poor viability of probiotic microorganisms leading to inadequate shelf life. On occasions these problems mean that some commercially available products cannot be considered to meet the definition of a probiotic product. Given the potential benefits of manipulating the human microbiota for beneficial effects, there is a clear need for improved regulation of probiotics. The potential importance of the human microbiota cannot be overstated. ‘We feed our microbes, they talk to us and we benefit. We just have to understand and then exploit this.’ (Willem de Vos).
Resumo:
Remote sensing offers many advantages in the development of ecosystem indicators for the pelagic zone of the ocean. Particularly suitable in this context are the indicators arising from time series that can be constructed from remotely sensed data. For example, using ocean-colour radiometry, the phenology of phytoplankton blooms can be assessed. Metrics defined in this way show promise as informative indicators for the entire pelagic ecosystem. A simple phytoplankton–substrate model, with forcing dependent on latitude and day number is used to explore the qualitative features of bloom phenology for comparison with the results observed in a suite of 10-year time series of chlorophyll concentration, as assessed by remote sensing, from the Northwest Atlantic Ocean. The model reveals features of the dynamics that might otherwise have been overlooked in evaluation of the observational data.
Resumo:
The summer monsoon season is an important hydrometeorological feature of the Indian subcontinent and it has significant socioeconomic impacts. This study is aimed at understanding the processes associated with the occurrence of catastrophic flood events. The study has two novel features that add to the existing body of knowledge about the South Asian Monsoon: 1) combine traditional hydrometeorological observations (rain gauge measurements) with unconventional data (media and state historical records of reported flooding) to produce value-added century-long time-series of potential flood events, and 2) identify the larger regional synoptic conditions leading to days with flood potential in the time-series. The promise of mining unconventional data to extend hydrometeorological records is demonstrated in this study. The synoptic evolution of flooding events in the western-central coast of India and the densely populated Mumbai area are shown to correspond to active monsoon periods with embedded low-pressure centers and have far upstream influence from the western edge of the Indian Ocean basin. The coastal processes along the Arabian Peninsula where the currents interact with the continental shelf are found to be key features of extremes during the South Asian Monsoon
Resumo:
We present a new speleothem record of atmospheric Δ14C between 28 and 44 ka that offers considerable promise for resolving some of the uncertainty associated with existing radiocarbon calibration curves for this time period. The record is based on a comprehensive suite of AMS 14C ages, using new low-blank protocols, and U–Th ages using high precision MC-ICPMS procedures. Atmospheric Δ14C was calculated by correcting 14C ages with a constant dead carbon fraction (DCF) of 22.7 ± 5.9%, based on a comparison of stalagmite 14C ages with the IntCal04 (Reimer et al., 2004) calibration curve between 15 and 11 ka. The new Δ14C speleothem record shows similar structure and amplitude to that derived from Cariaco Basin foraminifera (Hughen et al., 2004, 2006), and the match is further improved if the latter is tied to the most recent Greenland ice core chronology (Svensson et al., 2008). These data are however in conflict with a previously published 14C data set for a stalagmite record from the Bahamas — GB-89-24-1 (Beck et al., 2001), which likely suffered from 14C analytical blank subtraction issues in the older part of the record. The new Bahamas speleothem ∆14C data do not show the extreme shifts between 44 and 40 ka reported in the previous study (Beck et al., 2001). Causes for the observed structure in derived atmospheric Δ14C variation based on the new speleothem data are investigated with a suite of simulations using an earth system model of intermediate complexity. Data-model comparison indicates that major fluctuations in atmospheric ∆14C during marine isotope stage 3 is primarily a function of changes in geomagnetic field intensity, although ocean–atmosphere system reorganisation also played a supporting role.
Resumo:
The development of versatile bioactive surfaces able to emulate in vivo conditions is of enormous importance to the future of cell and tissue therapy. Tuning cell behaviour on two-dimensional surfaces so that the cells perform as if they were in a natural three-dimensional tissue represents a significant challenge, but one that must be met if the early promise of cell and tissue therapy is to be fully realised. Due to the inherent complexities involved in the manufacture of biomimetic three-dimensional substrates, the scaling up of engineered tissue-based therapies may be simpler if based upon proven two-dimensional culture systems. In this work, we developed new coating materials composed of the self-assembling peptide amphiphiles (PAs) C16G3RGD (RGD) and C16G3RGDS (RGDS) shown to control cell adhesion and tissue architecture while avoiding the use of serum. When mixed with the C16ETTES diluent PA at 13 : 87 (mol mol-1) ratio at 1.25 times 10-3 M, the bioactive {PAs} were shown to support optimal adhesion, maximal proliferation, and prolonged viability of human corneal stromal fibroblasts ({hCSFs)}, while improving the cell phenotype. These {PAs} also provided stable adhesive coatings on highly-hydrophobic surfaces composed of striated polytetrafluoroethylene ({PTFE)}, significantly enhancing proliferation of aligned cells and increasing the complexity of the produced tissue. The thickness and structure of this highly-organised tissue were similar to those observed in vivo, comprising aligned newly-deposited extracellular matrix. As such, the developed coatings can constitute a versatile biomaterial for applications in cell biology, tissue engineering, and regenerative medicine requiring serum-free conditions.
Resumo:
A Guide to Office Clerical Time Standards is an instructional performance piece based on a corporate manual from 1960. The pamphlet is focused on the time necessary for the accomplishment of minute labour procedures in the office, from the depressing and releasing of typewriter keys to the opening and closing of filing cabinet drawers. In the performance, seven costumed performers represent the different levels of management and employment while performing the actions described in the guide, accompanied by a live musical score. There has been much discussion of the changes to work in the west following the decline of post-Fordist service sector jobs. These increasingly emphasise the specificity of employees’ knowledge and cognitive skill. However, this greater flexibility and creativity at work has been accompanied by an opposite trajectory. The proletarisation of white collar work has given rise to more bureaucracy, target assessment and control for workers in previously looser creative professions, from academia to the arts. The midcentury office is the meeting point of these cultures, where the assembly line efficiency management of the factory meets the quantifying control of the knowledge economy. A Guide to Office Clerical Time Standards explores the survival of one regime into its successor following the lines of combined and uneven development that have turned the emancipatory promise of immaterial labour into the perma-temp hell of the cognitariat. The movement is accompanied by a score of guitar, bass and drums, the componenets of the rock ‘n’ roll music that rose from the car factories of the motor city and the cotton fields of the southern states to represent the same junction of expression and control.
Resumo:
Climate model ensembles are widely heralded for their potential to quantify uncertainties and generate probabilistic climate projections. However, such technical improvements to modeling science will do little to deliver on their ultimate promise of improving climate policymaking and adaptation unless the insights they generate can be effectively communicated to decision makers. While some of these communicative challenges are unique to climate ensembles, others are common to hydrometeorological modeling more generally, and to the tensions arising between the imperatives for saliency, robustness, and richness in risk communication. The paper reviews emerging approaches to visualizing and communicating climate ensembles and compares them to the more established and thoroughly evaluated communication methods used in the numerical weather prediction domains of day-to-day weather forecasting (in particular probabilities of precipitation), hurricane and flood warning, and seasonal forecasting. This comparative analysis informs recommendations on best practice for climate modelers, as well as prompting some further thoughts on key research challenges to improve the future communication of climate change uncertainties.