992 resultados para product cycle
Resumo:
The aim of this work is to perform an in-depth overview on the sustainability of several major commercialized technologies for water desalination and to identify the challenges and propose suggestions for the development of water desalination technologies. The overview of those technologies mainly focuses on the sustainability from the viewpoint of total capital investment, total product cost, energy consumption and global warming index. Additionally, a systematic sustainability assessment methodology has been introduced to validate the assessment process. Conclusions are:1) Reverse osmosis desalination (RO) plants are better than multi-stage flash distillation (MSF) desalination plants and multiple-effect distillation (MED) desalination plants from the viewpoint of energy consumption, global warming index and total production cost; 2)Though energy intensive, MSF plants and MED plants secure their advantages over RO plants by lower total capital investment, wider applicability and purer water desalted and they are still likely to flourish in energy-rich area;3) Water production stage and wastewater disposal stage are the two stages during which most pollutant gases are emitted. The water production stage alone contributes approximately 80~90% of the total pollutant gases emission during its life cycle; 4)The total capital cost per m3 desalted water decreases remarkably with the increasing of plant capacity. The differences between the capital cost per m3 desalted water of RO and other desalination plants will decrease as the capacity increases; 5) It is found that utilities costs serve as the major part of the total product cost, and they account for 91.16%, 85.55% and 71.26% of the total product cost for MSF, MED and RO plants, respectively; 6) The absolute superiority of given technology depends on the actual social-economic situation (energy prices, social policies, technology advancements).
Resumo:
Presentation at Open Repositories 2014, Helsinki, Finland, June 9-13, 2014
Resumo:
Työn tilaajana toimi Visedo Oy. Työn tavoitteina oli tutkia Visedo Oy:n ohjelmistokehityksen nykytila, tunnistaa seuraavat parannuskohteet ja antaa ohjeita havaittujen parannuskohteiden korjaamiseksi. Visedo Oy:n tehonmuokkain ohjelmistokehityksen nykytilaa käsiteltiin neljän valitun osa-alueen näkökulmasta: ohjelmistoarkkitehtuurityyli, komponenttipohjainen ohjelmistokehitys, ohjelmistotuotelinjojen kehitysmenetelmät ja ohjelmistovariaatioiden hallinta. Valituilla osa-alueilla havaittujen parannuskohteiden perusteella annettiin korjausehdotuksia: ohjelmistoarkkitehtuurin rakenteeseen, komponenttien jakautumiselle, komponenttien koostamiselle ja komponenttien versioinnille. Lisäksi ehdotettiin uudenlaista ohjelmistotuotelinja rakennetta, joka yhdistää kerros- ja komponenttipohjaiset arkkitehtuurityylit mahdollistaen ominaisuuksiltaan eroavien tehonmuokkain ohjelmistojen hallinnan.
Resumo:
The master´s thesis had three aims; to develop a service portfolio, to support the management of services through the developed portfolio, and evaluate effects of service differentiation strategy on the future selection of services. The product oriented case company in service paradox is Hilti (Suomi) Oy, which is entering systematic service management era, supported by the late strategic change. Low return on service business investments is referred as service paradox. The project was carried out as a case study, where the primary information source was twenty-one conducted interviews. The theory part focuses on marketing logics, service strategies, and categorization of services. The empirical part contributes in solving the aim related research questions. As a result of the case study a service portfolio was created, next further steps in service management were suggested, and the effect on selection of services by service differentiation strategy was evaluated. The main goal of creating service portfolio contributes to systematic management of services, which required revising at the case company.
Resumo:
The steel industry produces, besides steel, also solid mineral by-products or slags, while it emits large quantities of carbon dioxide (CO2). Slags consist of various silicates and oxides which are formed in chemical reactions between the iron ore and the fluxing agents during the high temperature processing at the steel plant. Currently, these materials are recycled in the ironmaking processes, used as aggregates in construction, or landfilled as waste. The utilization rate of the steel slags can be increased by selectively extracting components from the mineral matrix. As an example, aqueous solutions of ammonium salts such as ammonium acetate, chloride and nitrate extract calcium quite selectively already at ambient temperature and pressure conditions. After the residual solids have been separated from the solution, calcium carbonate can be precipitated by feeding a CO2 flow through the solution. Precipitated calcium carbonate (PCC) is used in different applications as a filler material. Its largest consumer is the papermaking industry, which utilizes PCC because it enhances the optical properties of paper at a relatively low cost. Traditionally, PCC is manufactured from limestone, which is first calcined to calcium oxide, then slaked with water to calcium hydroxide and finally carbonated to PCC. This process emits large amounts of CO2, mainly because of the energy-intensive calcination step. This thesis presents research work on the scale-up of the above-mentioned ammonium salt based calcium extraction and carbonation method, named Slag2PCC. Extending the scope of the earlier studies, it is now shown that the parameters which mainly affect the calcium utilization efficiency are the solid-to-liquid ratio of steel slag and the ammonium salt solvent solution during extraction, the mean diameter of the slag particles, and the slag composition, especially the fractions of total calcium, silicon, vanadium and iron as well as the fraction of free calcium oxide. Regarding extraction kinetics, slag particle size, solid-to-liquid ratio and molar concentration of the solvent solution have the largest effect on the reaction rate. Solvent solution concentrations above 1 mol/L NH4Cl cause leaching of other elements besides calcium. Some of these such as iron and manganese result in solution coloring, which can be disadvantageous for the quality of the PCC product. Based on chemical composition analysis of the produced PCC samples, however, the product quality is mainly similar as in commercial products. Increasing the novelty of the work, other important parameters related to assessment of the PCC quality, such as particle size distribution and crystal morphology are studied as well. As in traditional PCC precipitation process, the ratio of calcium and carbonate ions controls the particle shape; a higher value for [Ca2+]/[CO32-] prefers precipitation of calcite polymorph, while vaterite forms when carbon species are present in excess. The third main polymorph, aragonite, is only formed at elevated temperatures, above 40-50 °C. In general, longer precipitation times cause transformation of vaterite to calcite or aragonite, but also result in particle agglomeration. The chemical equilibrium of ammonium and calcium ions and dissolved ammonia controlling the solution pH affects the particle sizes, too. Initial pH of 12-13 during the carbonation favors nonagglomerated particles with a diameter of 1 μm and smaller, while pH values of 9-10 generate more agglomerates of 10-20 μm. As a part of the research work, these findings are implemented in demonstrationscale experimental process setups. For the first time, the Slag2PCC technology is tested in scale of ~70 liters instead of laboratory scale only. Additionally, design of a setup of several hundreds of liters is discussed. For these purposes various process units such as inclined settlers and filters for solids separation, pumps and stirrers for material transfer and mixing as well as gas feeding equipment are dimensioned and developed. Overall emissions reduction of the current industrial processes and good product quality as the main targets, based on the performed partial life cycle assessment (LCA), it is most beneficial to utilize low concentration ammonium salt solutions for the Slag2PCC process. In this manner the post-treatment of the products does not require extensive use of washing and drying equipment, otherwise increasing the CO2 emissions of the process. The low solvent concentration Slag2PCC process causes negative CO2 emissions; thus, it can be seen as a carbon capture and utilization (CCU) method, which actually reduces the anthropogenic CO2 emissions compared to the alternative of not using the technology. Even if the amount of steel slag is too small for any substantial mitigation of global warming, the process can have both financial and environmental significance for individual steel manufacturers as a means to reduce the amounts of emitted CO2 and landfilled steel slag. Alternatively, it is possible to introduce the carbon dioxide directly into the mixture of steel slag and ammonium salt solution. The process would generate a 60-75% pure calcium carbonate mixture, the remaining 25-40% consisting of the residual steel slag. This calcium-rich material could be re-used in ironmaking as a fluxing agent instead of natural limestone. Even though this process option would require less process equipment compared to the Slag2PCC process, it still needs further studies regarding the practical usefulness of the products. Nevertheless, compared to several other CO2 emission reduction methods studied around the world, the within this thesis developed and studied processes have the advantage of existing markets for the produced materials, thus giving also a financial incentive for applying the technology in practice.
Resumo:
With the increasing concern of the sustainable approach of gold mining, thiosulphate has been researched as an alternative lixiviant to cyanide since cyanide is toxic to the environment. In order to investigate the possibility of thiosulphate leaching application in the coming future, life cycle assessment, is conducted to compare the environmental footprint of cyanidation and thiosulphate leaching. The result showed the most significant environmental impact of cyanidation is toxicity to human, while the ammonia of thiosulphate leaching is also a major concern of acidification. In addition, an ecosystem evaluation is also performed to indicate the potential damages caused by an example of cyanide spill at Kittilä mine, resulting in significant environmental risk cost that has to be taken into account for decision making. From the opinion collected from an online LinkedIn discussion forum, the anxiety of sustainability alone would not be enough to contribute a significant change of conventional cyanidation, until the tighten policy of cyanide use. International Cyanide Code, therefore, is crucial for safe gold production. Nevertheless, it is still thoughtful to consider the values of healthy ecosystem and the gold for long-term benefit.
Resumo:
Putkipalkkiliitosten käyttäminen offshore-teollisuuden rakennusten tukirakenteissa on erittäin yleistä. Liitosten valmistaminen on hankalaa ja hidasta. Hyvin usein tukirakenteiden putkipalkkiliitokset joudutaan hitsaamaan manuaalisesti tukirakenteen suuren koon vuoksi. Tukirakenteen uudella valmistustavalla, jossa rakenne kootaan pienemmistä osista, voidaan putkipalkkiliitosten valmistaminen ja hitsaaminen automatisoida. Robottihitsausasema sekä sen käyttöliittymä ja ohjelmisto todettiin toimivaksi ratkaisuksi putkipalkkiliitosten hitsaamiseen. Automaatiosuunnitteluun liittyy monia eri vaiheita, joiden huolellinen läpikäynti takaa todenmukaisemman konseptiratkaisun. Konseptiratkaisu kehittyy samalla, kun laitteistoja ja layoutia muokataan valmiimmiksi. Automaatiosuunnittelun aikana pyritään löytämään oikea taso automaatiolle. Valittu automaation taso vaikuttaa tuotannon tuottavuuteen, läpimenoaikaan ja joustavuuteen. Automaation määrällä vaikutetaan myös ihmisen tekemän työn määrään ja työnkuvaan. Tässä diplomityössä kehitettiin Pemamek Oy:lle hitsausautomaatioratkaisuja putkimaisille kappaleille. Putkiston osia valmistavan tehtaan hitsaus- ja tuotantoautomaation konseptiratkaisua tarkasteltiin esimerkkitapauksen muodossa, jolla kuvattiin, kuinka automaatiojärjestelmä voidaan suunnitella konseptitasolle. Toinen hitsausautomaatioratkaisu, joka tässä työssä kehitettiin, on robottihitsausasema käyttöliittymineen putkipalkkiliitoksen hitsaamiseen.
Resumo:
Purification of hydrocarbon waste streams is needed to recycle valuable hydrocarbon products, reduce hazardous impacts on environment, and save energy. To obtain these goals, research must be focused on the search of effective and feasible purification and re-refining technologies. Hydrocarbon waste streams can contain both deliberately added additives to original product and during operation cycle accumulated undesired contaminants. Compounds may have degenerated or cross-reacted. Thus, the presence of unknown species cause additional challenges for the purification process. Adsorption process is most suitable to reduce impurities to very low concentrations. Main advantages are availability of selective commercial adsorbents and the regeneration option to recycle used separation material. Used hydrocarbon fraction was purified with various separation materials in the experimental part. First screening of suitable materials was done. In the second stage, temperature dependence and adsorption kinetics were studied. Finally, one fixed bed experiment was done with the most suitable material. Additionally, FTIR-measurements of hydrocarbon samples were carried out to develop a model to monitor the concentrations of three target impurities based on spectral data. Adsorption capacities of the tested separation materials were observed to be low to achieve high enough removal efficiencies for target impurities. Based on the obtained data, batch process would be more suitable than a fixed bed process and operation at high temperatures is favorable. Additional pretreatment step is recommended to improve removal efficiency. The FTIR-measurement was proven to be a reliable and fast analysis method for challenging hydrocarbon samples.
Resumo:
The effect of co-culturing varying concentrations of pig and human red blood cells (RBCs) on the baseline frequency of sister chromatid exchanges (SCEs) and cell-cycle progression in pig plasma (PLCs) and whole blood leukocyte cultures (WBCs) was studied. No variation in SCE frequency was observed between pig control WBC and PLC. Addition of pig and human RBCs to pig PLCs did not modify the baseline frequency of SCEs. On the other hand, cell proliferation was slower in PLCs than in WBCs. The addition of pig or human RBCs to PLCs accelerated the cell-cycle progression of pig lymphocytes. When RBCs were added to PLCs the concentration and time sequence of RBC incorporation affected the cell-cycle progression of swine lymphocytes. When doses of pig or human RBCs equivalent to those present in WBCs were added immediately after PLC stimulation, the cell-cycle kinetics were similar to those of WBCs. Shorter co-incubation periods or a reduction in the dose of RBCs made cell-cycle progression intermediate between PLC and WBC values. Thus, pig and human RBCs modulated the in vitro cell-cycle progression of pig lymphocytes in a time- and dose-dependent manner, and the low baseline frequency of SCEs of pig lymphocytes is independent of the presence or absence of erythrocytes in culture
Resumo:
The aim of the present investigation was to extend a previous study, showing a correlation of the variations of hemolymph carbohydrates with synodic lunar-like cycle and its circaseptan harmonics to worker honeybee hemolymph lipids. Hemolymph lipid concentrations of emerging worker imagos were analyzed in terms of one ideal synodic lunar cycle and processed by the cosinor method testing the null hypothesis versus the presence of 29.5-, 14.8- or 7.4-day periods in the data. A rhythmicity statistically compatible with a 29.5-day rhythm was observed for triacylglycerols and steroids as well as for body weight. A circadiseptan rhythm was determined for 1,3 diacylglycerols, while fatty acids and phospholipids exhibited a circaseptan rhythm. An agreement of peaks for triacylglycerols, steroids and body weight at the new moon, but not at the full moon, was noted with respect to trehalose and glucose circadiseptan rhythms. The latter moon-phase timing of peaks and nadirs, compared with that previously determined for trehalose and glucose, appeared to be identical to the circadiseptan rhythm and reciprocal for the circaseptan rhythms of 1,3 diacylglycerols. Reciprocal tendencies in circaseptans of trehalose and glucose on the one hand, and fatty acids and phospholipids on the other are indicated. The underlying causal nexus of these relationships is unknown
Resumo:
A process for purifying bovine pancreatic glucagon as a by-product of insulin production is described. The glucagon-containing supernatant from the alkaline crystallization of insulin was precipitated using ammonium sulfate and isoelectric precipitation. The isoelectric precipitate containing glucagon was then purified by ion-exchange chromatography on Q-Sepharose FF, gel filtration on Sephadex G-25 and ion-exchange chromatography on S-Sepharose FF. A pilot scale test was performed with a recovery of 87.6% and a purification factor of 8.78 for the first chromatographic step, a recovery of 75.1% and a purification factor of 3.90 for the second, and a recovery of 76.2% and a purification factor of 2.36 for the last one. The overall yield was 50%, a purification factor of 80.8 was obtained and the fraction containing active glucagon (suitable for pharmaceutical preparations) was 84% pure as analyzed by HPLC
Resumo:
The Kraft pulping process is the dominant chemical pulping process in the world. Roughly 195 million metric tons of black liquor are produced annually as a by-product from the Kraft pulping process. Black liquor consists of spent cooking chemicals and dissolved organics from the wood and can contain up to 0.15 wt% nitrogen on dry solids basis. The cooking chemicals from black liquor are recovered in a chemical recovery cycle. Water is evaporated in the first stage of the chemical recovery cycle, so the black liquor has a dry solids content of 65-85% prior to combustion. During combustion of black liquor, a portion of the black liquor nitrogen is volatilized, finally forming N2 or NO. The rest of the nitrogen remains in the char as char nitrogen. During char conversion, fixed carbon is burned off leaving the pulping chemicals as smelt, and the char nitrogen forms mostly smelt nitrogen (cyanate, OCN-). Smelt exits the recovery boiler and is dissolved in water. The cyanate from smelt decomposes in the presence of water, forming NH3, which causes nitrogen emissions from the rest of the chemical recovery cycle. This thesis had two focuses: firstly, to determine how the nitrogen chemistry in the recovery boiler is affected by modification of black liquor; and secondly, to find out what causes cyanate formation during thermal conversion, and which parameters affect cyanate formation and decomposition during thermal conversion of black liquor. The fate of added biosludge nitrogen in chemical recovery was determined in Paper I. The added biosludge increased the nitrogen content of black liquor. At the pulp mill, the added biosludge did not increase the NO formation in the recovery boiler, but instead increased the amount of cyanate in green liquor. The increased cyanate caused more NH3 formation, which increased the NCG boiler’s NO emissions. Laboratory-scale experiments showed an increase in both NO and cyanate formation after biosludge addition. Black liquor can be modified, for example by addition of a solid biomass to increase the energy density of black liquor, or by separation of lignin from black liquor by precipitation. The precipitated lignin can be utilized in the production of green chemicals or as a fuel. In Papers II and III, laboratory-scale experiments were conducted to determine the impact of black liquor modification on NO and cyanate formation. Removal of lignin from black liquor reduced the nitrogen content of the black liquor. In most cases NO and cyanate formation decreased with increasing lignin removal; the exception was NO formation from lignin lean soda liquors. The addition of biomass to black liquor resulted in a higher nitrogen content fuel mixture, due to the higher nitrogen content of biomass compared to black liquor. More NO and cyanate were formed from the fuel mixtures than from pure black liquor. The increased amount of formed cyanate led to the hypothesis that black liquor is catalytically active and converts a portion of the nitrogen in the mixed fuel to cyanate. The mechanism behind cyanate formation during thermal conversion of black liquor was not clear before this thesis. Paper IV studies the cyanate formation of alkali metal loaded fuels during gasification in a CO2 atmosphere. The salts K2CO3, Na2CO3, and K2SO4 all promoted char nitrogen to cyanate conversion during gasification, while KCl and CaCO3 did not. It is now assumed that cyanate is formed when alkali metal carbonate or an active intermediate of alkali metal carbonate (e.g. -CO2K) reacts with the char nitrogen forming cyanate. By testing different fuels (bark, peat, and coal), each of which had a different form of organic nitrogen, it was concluded that the form of organic nitrogen in char also has an impact on cyanate formation. Cyanate can be formed during pyrolysis of black liquor, but at temperatures 900°C or above, the formed cyanate will decompose. Cyanate formation in gasifying conditions with different levels of CO2 in the atmosphere was also studied. Most of the char nitrogen was converted to cyanate during gasification at 800-900°C in 13-50% CO2 in N2, and only 5% of the initial fuel nitrogen was converted to NO during char conversion. The formed smelt cyanate was stable at 800°C 13% CO2, while it decomposed at 900°C 13% CO2. The cyanate decomposition was faster at higher temperatures and in oxygen-containing atmospheres than in an inert atmosphere. The presence of CO2 in oxygencontaining atmospheres slowed down the decomposition of cyanate. This work will provide new information on how modification of black liquor affects the nitrogen chemistry during thermal conversion of black liquor and what causes cyanate formation during thermal conversion of black liquor. The formation and decomposition of cyanate was studied in order to provide new data, which would be useful in modeling of nitrogen chemistry in the recovery boiler.
Resumo:
FGF2 elicits a strong mitogenic response in the mouse Y-1 adrenocortical tumor cell line, that includes a rapid and transient activation of the ERK-MAPK cascade and induction of the c-Fos protein. ACTH, itself a very weak mitogen, blocks the mitogenic response effect of FGF2 in the early and middle G1 phase, keeping both ERK-MAPK activation and c-Fos induction at maximal levels. Probing the mitogenic response of Y-1 cells to FGF2 with ACTH is likely to uncover reactions underlying the effects of this hormone on adrenocortical cell growth.
Resumo:
The use of gene therapy continues to be a promising, yet elusive, alternative for the treatment of cancer. The origins of cancer must be well understood so that the therapeutic gene can be chosen with the highest chance of successful tumor regression. The gene delivery system must be tailored for optimum transfer of the therapeutic gene to the target tissue. In order to accomplish this, we study models of G1 cell-cycle control in both normal and transformed cells in order to understand the reasons for uncontrolled cellular proliferation. We then use this information to choose the gene to be delivered to the cells. We have chosen to study p16, p21, p53 and pRb gene transfer using the pCL-retrovirus. Described here are some general concepts and specific results of our work that indicate continued hope for the development of genetically based cancer treatments.
Resumo:
The effects of the benzodiazepine1 (BZ1) receptor agonist SX-3228 were studied in rats (N = 12) implanted for chronic sleep procedures. Administration of 0.5, 1.0 and 2.5 mg/kg SX-3228, sc, to rats 1 h after the beginning of the light phase of the light-dark cycle induced a significant reduction of rapid-eye-movement sleep (REMS) during the third recording hour. Moreover, slow wave sleep (SWS) was increased during the fourth recording hour after the two largest doses of the compound. Administration of 0.5, 1.0 and 2.5 mg/kg SX-3228 one hour after the beginning of the dark period of the light-dark cycle caused a significant and maintained (6-h recording period) reduction of waking (W), whereas SWS and light sleep (LS) were increased. REMS values tended to increase during the entire recording period; however, the increase was statistically significant only for the 1.0 mg/kg dose during the first recording hour. In addition, a significant and dose-related increase of power density in the delta and the theta regions was found during nonREM sleep (LS and SWS) in the dark period. Our results indicate that SX-3228 is a potent hypnotic when given to the rat during the dark period of the light-dark cycle. Moreover, the sleep induced by SX-3228 during the dark phase closely resembles the physiological sleep of the rat.