958 resultados para predatory mites
Resumo:
Ongoing zooplankton research at the Plymouth Marine Laboratory has established a time series of zooplankton species since 1988 at L4, a coastal station off Plymouth. Samples were collected by vertical net hauls (WP2 net, mesh 200 µm; UNESCO 1968) from the sea floor (approximately 50 m) to the surface and stored in 4% formalin. Much of the zooplankton analysis has been to the level of "major taxonomic groups" only, and a number of different analysts have participated over the years. The level of expertise has generally been consistent, but the user should be aware that levels of taxonomic discrimination may vary during the course of the dataset. The dominant calanoid copepods are generally well discriminated to species throughout. Calanus has not been routinely examined for species determination, the assumption being that the local population is entirely composed of Calanus helgolandicus. In certain years there has been a particular interest in Temora stylifera, Centropages cherchiae and other species reflected in the dataset. The lack of records in other previous years does not necessarily reflect species absence. We view it as essential for all users of L4 plankton data to establish and maintain contact with the nominated current data originators as well as fully consulting the metadata. While not impinging on free data access, this ensures that this large, species-rich but slightly complex species database is being used in the correct way, and any potential issues with the data are clarified. Furthermore, a proper dialogue with these local experts on the time series will enable where appropriate the most recent sampling timepoints to be used. The data can be downloaded from BODC or from doi:10.1594/PANGAEA.778092 as files for each year by searching for "L4 zooplankton". The most comprehensive dataset is the version downloadable directly from this page. The entire set of zooplankton samples is stored at the Plymouth Marine Laboratory in buffered formalin, and may be available for further taxonomic analysis on request.
Resumo:
Composition, grain-size distribution, and areal extent of Recent sediments from the Northern Adriatic Sea along the Istrian coast have been studied. Thirty one stations in four sections vertical to the coast were investigated; for comparison 58 samples from five small bays were also analyzed. Biogenic carbonate sediments are deposited on the shallow North Adriatic shelf off the Istrian coast. Only at a greater distance from the coast are these carbonate sediments being mixed with siliceous material brought in by the Alpine rivers Po, Adige, and Brenta. Graphical analysis of grain-size distribution curves shows a sediment composition of normally three, and only in the most seaward area, of four major constituents. Constituent 1 represents the washed-in terrestrial material of clay size (Terra Rossa) from the Istrian coastal area. Constituent 2 consists of fine to medium sand. Constituent 3 contains the heterogeneous biogenic material. Crushing by organisms and by sediment eaters reduces the coarse biogenic material into small pieces generating constituent 2. Between these two constituents there is a dynamic equilibrium. Depending upon where the equilibrium is, between the extremes of production and crushing, the resulting constituent 2 is finer or coarser. Constituent 4 is composed of the fine sandy material from the Alpine rivers. In the most seaward area constituents 2 and 4 are mixed. The total carbonate content of the samples depends on the distance from the coast. In the near coastal area in high energy environments, the carbonate content is about 80 %. At a distance of 2 to 3 km from the coast there is a carbonate minimum because of the higher rate of sedimentation of clay-sized terrestrial, noncarbonate material at extremely low energy environments. In an area between 5 and 20 km off the coast, the carbonate content is about 75 %. More than 20 km from the shore, the carbonate content diminishes rapidly to values of about 30 % through mixing with siliceous material from the Alpine rivers. The carbonate content of the individual fractions increases with increasing grain-size to a maximum of about 90 % within the coarse sand fractions. Beyond 20 km from the coast the samples show a carbonate minimum of about 13 % within the sand-size classes from 1.5 to 0.7 zeta¬? through mixing with siliceous material from the alpine rivers. By means of grain-size distribution and carbonate content, four sediment zones parallel to the coast were separated. Genetically they are closely connected with the zonation of the benthic fauna. Two cores show a characteristic vertical distribution of the sediment. The surface zone is inversely graded, that means the coarse fractions are at the top and the fine fractions are at the bottom. This is the effect of crushing of the biogenic material produced at the surface by predatory organisms and by sediment eaters. lt is proposed that at a depth of about 30 cm a chemical solution process begins which leads to diminution of the original sediment from a fine to medium sand to a silt. The carbonate content decreases from about 75 % at the surface to 65 % at a depth of 100 cm. The increase of the noncarbonate components by 10 % corresponds to a decrease in the initial amount of sediment (CaC03=75 %) by roughly 30 % through solution. With increasing depth the carbonate content of the individual fractions becomes more and more uniform. At the surface the variation is from 30 % to 90 %, at the bottom it varies only between 50 % and 75 %. Comparable investigations of small-bay sediments showed a c1ear dependence of sediment/faunal zonation from the energy of the environment. The investigations show that the composition and three-dimensional distribution of the Istrian coastal sediments can not be predicted only from one or a few measurable factors. Sedimentation and syngenetic changes must be considered as a complex interaction between external factors and the actions of producing and destroying organisms that are in dynamic equilibrium. The results obtained from investigations of these recent sediments may be of value for interpreting fossil sediments only with strong limitations.
Resumo:
Human-induced habitat destruction, overexploitation, introduction of alien species and climate change are causing species to go extinct at unprecedented rates, from local to global scales. There are growing concerns that these kinds of disturbances alter important functions of ecosystems. Our current understanding is that key parameters of a community (e.g. its functional diversity, species composition, and presence/absence of vulnerable species) reflect an ecological network's ability to resist or rebound from change in response to pressures and disturbances, such as species loss. If the food web structure is relatively simple, we can analyse the roles of different species interactions in determining how environmental impacts translate into species loss. However, when ecosystems harbour species-rich communities, as is the case in most natural systems, then the complex network of ecological interactions makes it a far more challenging task to perceive how species' functional roles influence the consequences of species loss. One approach to deal with such complexity is to focus on the functional traits of species in order to identify their respective roles: for instance, large species seem to be more susceptible to extinction than smaller species. Here, we introduce and analyse the marine food web from the high Antarctic Weddell Sea Shelf to illustrate the role of species traits in relation to network robustness of this complex food web. Our approach was threefold: firstly, we applied a new classification system to all species, grouping them by traits other than body size; secondly, we tested the relationship between body size and food web parameters within and across these groups and finally, we calculated food web robustness. We addressed questions regarding (i) patterns of species functional/trophic roles, (ii) relationships between species functional roles and body size and (iii) the role of species body size in terms of network robustness. Our results show that when analyzing relationships between trophic structure, body size and network structure, the diversity of predatory species types needs to be considered in future studies.
Resumo:
Little is known about the impact of ocean acidification on predator-prey dynamics. Herein, we examined the effect of carbon dioxide (CO(2)) on both prey and predator by letting one predatory reef fish interact for 24 h with eight small or large juvenile damselfishes from four congeneric species. Both prey and predator were exposed to control or elevated levels of CO(2). Mortality rate and predator selectivity were compared across CO(2) treatments, prey size and species. Small juveniles of all species sustained greater mortality at high CO(2) levels, while large recruits were not affected. For large prey, the pattern of prey selectivity by predators was reversed under elevated CO(2). Our results demonstrate both quantitative and qualitative consumptive effects of CO(2) on small and larger damselfish recruits respectively, resulting from CO(2)-induced behavioural changes likely mediated by impaired neurological function. This study highlights the complexity of predicting the effects of climate change on coral reef ecosystems.
Resumo:
Ocean acidification is anticipated to decrease calcification and increase dissolution of shelled molluscs. Molluscs with thinner and weaker shells may be more susceptible to predation, but not all studies have measured negative responses of molluscs to elevated pCO2. Recent studies measuring the response of molluscs have found greater variability at the population level than first expected. Here we investigate the impact of acidification on the predatory whelk Morula marginalba and genetically distinct subpopulations of the Pacific oyster Crassostrea gigas. Whelks and eight family lines of C. gigas were separately exposed to ambient (385 ppm) and elevated (1000 ppm) pCO2 for 6 weeks. Following this period, individuals of M. marginalba were transferred into tanks with oysters at ambient and elevated pCO2 for 17 days. The increase in shell height of the oysters was on average 63% less at elevated compared to ambient pCO2. There were differences in shell compression strength, thickness, and mass among family lines of C. gigas, with sometimes an interaction between pCO2 and family line. Against expectations, this study found increased shell strength in the prey and reduced shell strength in the predator at elevated compared to ambient pCO2. After 10 days, the whelks consumed significantly more oysters regardless of whether C. gigas had been exposed to ambient or elevated CO2, but this was not dependent on the family line and the effect was not significant after 17 days. Our study found an increase in predation after exposure of the predator to predicted near-future levels of estuarine pCO2.