995 resultados para pre-oxidation
Resumo:
Hypochlorous acid (HOCl) released by activated leukocytes has been implicated in the tissue damage that characterizes chronic inflammatory diseases. In this investigation, 14 indole derivatives, including metabolites such as melatonin, tryptophan and indole-3-acetic acid, were screened for their ability to inhibit the generation of this endogenous oxidant by stimulated leukocytes. The release of HOCl was measured by the production of taurine-chloramine when the leukocytes (2 x 10(6) cells/mL) were incubated at 37ºC in 10 mM phosphate-buffered saline, pH 7.4, for 30 min with 5 mM taurine and stimulated with 100 nM phorbol-12-myristate acetate. Irrespective of the group substituted in the indole ring, all the compounds tested including indole, 2-methylindole, 3-methylindole, 2,3-dimethylindole, 2,5-dimethylindole, 2-phenylindole, 5-methoxyindole, 6-methoxyindole, 5-methoxy-2-methylindole, melatonin, tryptophan, indole-3-acetic acid, 5-methoxy-2-methyl-3-indole-acetic acid, and indomethacin (10 µM) inhibited the chlorinating activity of myeloperoxidase (MPO) in the 23-72% range. The compounds 3-methylindole and indole-3-acetic acid were chosen as representative of indole derivatives in a dose-response study using purified MPO. The IC50 obtained were 0.10 ± 0.03 and 5.0 ± 1.0 µM (N = 13), respectively. These compounds did not affect the peroxidation activity of MPO or the production of superoxide anion by stimulated leukocytes. By following the spectral change of MPO during the enzyme turnover, the inhibition of HOCl production can be explained on the basis of the accumulation of the redox form compound-II (MPO-II), which is an inactive chlorinating species. These results show that indole derivatives are effective and selective inhibitors of MPO-chlorinating activity.
Resumo:
The estimation of losses plays a key role in the process of building any electrical machine. How to estimate those losses while designing any machine; by obtaining the characteristic of the electrical steel from the catalogue and calculate the losses. However, this way is inaccurate since the electrical steel performs several manufacturing processes during the process of building any machine, which affects directly the magnetic property of the electrical steel and accordingly the characteristic of the electrical steel will be affected. That means the B–H curve of the steel that was obtained from the catalogue will be changed. Moreover, during loading and rotating the machine, some important changes occur to the B–H characteristic of the electrical steel such as the stress on the laminated iron. Accordingly, the pre-estimated losses are completely far from the actual losses because they were estimated based on the data of the electrical steel obtained from the catalogue. So in order to estimate the losses precisely significant factors of the manufacturing processes must be included. The paper introduces the systematic estimation of the losses including the effect of one of the manufacturing factors. Similarly, any other manufacturing factor can be included in the pre-designed losses estimations.
Resumo:
Intracranial aneurysmal subarachnoid hemorrhage (aSAH) is a life-threatening condition requiring immediate neurocritical care. A ruptured aneurysm must be isolated from arterial circulation to prevent rebleeding. Open surgical clipping of the neck of the aneurysm or intra-arterial filling of the aneurysm sack with platinum coils are major treatment strategies in an acute phase. About 40% of the patients suffering from aSAH die within a year of the bleeding despite the intensive treatment. After aSAH, the patient may develop a serious complication called vasospasm. Major risk for the vasospasm takes place at days 5–14 after the primary bleeding. In vasospasm, cerebral arteries contract uncontrollably causing brain ischemia that may lead to death. Nimodipine (NDP) is used to treat of vasospasm and it is administrated intravenously or orally every four hours for 21 days. NDP treatment has been scientifically proven to improve patients’ clinical outcome. The therapeutic effect of L-type calcium channel blocker NDP is due to the ability to dilate cerebral arteries. In addition to vasodilatation, recent research has shown the pleiotropic effect of NDP such as inhibition of neuronal apoptosis and inhibition of microthrombi formation. Indeed, NDP inhibits cortical spreading ischemia. Knowledge of the pathophysiology of the vasospasm has evolved in recent years to a complex entity of early brain injury, secondary injuries and cortical spreading ischemia, instead of being pure intracranial vessel spasm. High NDP levels are beneficial since they protect neurons and inhibit the cortical spreading ischemia. One of the drawbacks of the intravenous or oral administration of NPD is systemic hypotension, which is harmful particularly when the brain is injured. Maximizing the beneficial effects and avoiding systemic hypotension of NDP, we developed a sustained release biodegradable NDP implant that was surgically positioned in the basal cistern of animal models (dog and pig). Higher concentrations were achieved locally and lower concentrations systemically. Using this treatment approach in humans, it may be possible to reduce incidence of harmful hypotension and potentiate beneficial effects of NDP on neurons. Intracellular calcium regulation has a pivotal role in brain plasticity. NDP blocks L-type calcium channels in neurons, substantially decreasing intracellular calcium levels. Thus, we were interested in how NDP affects brain plasticity and tested the hypothesis in a mouse model. We found that NDP activates Brain-derived neurotrophic factor (BDNF) receptor TrkB and its downstream signaling in a reminiscent of antidepressant drugs. In contrast to antidepressant drugs, NDP activates Akt, a major survival-promoting factor. Our group’s previous findings demonstrate that long-term antidepressant treatment reactivates developmental-type of plasticity mechanisms in the adult brain, which allows the remodeling of neuronal networks if combined with appropriate rehabilitation. It seems that NDP has antidepressant-like properties and it is able to induce neuronal plasticity. In general, drug induced neuronal plasticity has a huge potential in neurorehabilitation and more studies are warranted.
Resumo:
The amplification of pain long after the initial stimulus may be avoided if the treatment of pain is introduced before its initiation. However, conflicting evidence exists about the efficacy of such preemptive analgesia for the management of postoperative pain. This study compares the efficacy of intraplantar administration of indomethacin (a non-selective inhibitor of cyclooxygenase) and MK886 (an inhibitor of 5-lipoxygenase-activating protein), separately or in combination to produce preemptive analgesia in a model of surgical incisional pain in male Wistar rats. All incised rats (5 to 6 rats per group) had allodynia at 2, 6, and 24 h after surgery as evaluated using von Frey filaments. MK886, but not indomethacin (50 to 200 µg/paw), reduced the allodynia when injected either 1 h before or 1 h after surgery. The effect of preoperative MK886 (160 µg/paw) against incisional allodynia had a magnitude apparently similar to that produced by postoperative MK886. Pre-, but not postoperative MK886 (80 µg/paw) reduced the allodynia but the effect was seen only at 6 h after surgery. In contrast, MK886 (40 µg/paw) intensified the allodynia observed 2 h after the incision either injected before or after surgery. MK886 or indomethacin alone did not provide preemptive analgesia in the model of incisional pain. In contrast, the combination of MK886 with indomethacin reduced the allodynia more effectively when used before than after surgery, thus fulfilling the criteria for preemptive analgesia. In conclusion, preoperative inhibition of the local generation of both prostaglandins and leukotrienes by surgical incision may be an alternative to provide preemptive analgesia.
Resumo:
Oxysterols are 27-carbon atom molecules resulting from autoxidation or enzymatic oxidation of cholesterol. They are present in numerous foodstuffs and have been demonstrated to be present at increased levels in the plasma of patients with cardiovascular diseases and in atherosclerotic lesions. Thus, their role in lipid disorders is widely suspected, and they might also be involved in important degenerative diseases such as Alzheimer's disease, osteoporosis, and age-related macular degeneration. Since atherosclerosis is associated with the presence of apoptotic cells and with oxidative and inflammatory processes, the ability of some oxysterols, especially 7-ketocholesterol and 7β-hydroxycholesterol, to trigger cell death, activate inflammation, and modulate lipid homeostasis is being extensively studied, especially in vitro. Thus, since there are a number of essential considerations regarding the physiological/pathophysiological functions and activities of the different oxysterols, it is important to determine their biological activities and identify their signaling pathways, when they are used either alone or as mixtures. Oxysterols may have cytotoxic, oxidative, and/or inflammatory effects, or none whatsoever. Moreover, a substantial accumulation of polar lipids in cytoplasmic multilamellar structures has been observed with cytotoxic oxysterols, suggesting that cytotoxic oxysterols are potent inducers of phospholipidosis. This basic knowledge about oxysterols contributes to a better understanding of the associated pathologies and may lead to new treatments and new drugs. Since oxysterols have a number of biological activities, and as oxysterol-induced cell death is assumed to take part in degenerative pathologies, the present review will focus on the cytotoxic activities of these compounds, the corresponding cell death signaling pathways, and associated events (oxidation, inflammation, and phospholipidosis).
Resumo:
Human serum albumin (HSA) is the most abundant protein in the intravascular compartment. It possesses a single thiol, Cys34, which constitutes ~80% of the total thiols in plasma. This thiol is able to scavenge plasma oxidants. A central intermediate in this potential antioxidant activity of human serum albumin is sulfenic acid (HSA-SOH). Work from our laboratories has demonstrated the formation of a relatively stable sulfenic acid in albumin through complementary spectrophotometric and mass spectrometric approaches. Recently, we have been able to obtain quantitative data that allowed us to measure the rate constants of sulfenic acid reactions with molecules of analytical and biological interest. Kinetic considerations led us to conclude that the most likely fate for sulfenic acid formed in the plasma environment is the reaction with low molecular weight thiols to form mixed disulfides, a reversible modification that is actually observed in ~25% of circulating albumin. Another possible fate for sulfenic acid is further oxidation to sulfinic and sulfonic acids. These irreversible modifications are also detected in the circulation. Oxidized forms of albumin are increased in different pathophysiological conditions and sulfenic acid lies in a mechanistic junction, relating oxidizing species to final thiol oxidation products.
Resumo:
This study examined the effects of pre-exercise carbohydrate availability on the time to exhaustion for moderate and heavy exercise. Seven men participated in a randomized order in two diet and exercise regimens each lasting 3 days with a 1-week interval for washout. The tests were performed at 50% of the difference between the first (LT1) and second (LT2) lactate breakpoint for moderate exercise (below LT2) and at 25% of the difference between the maximal load and LT2 for heavy exercise (above LT2) until exhaustion. Forty-eight hours before each experimental session, subjects performed a 90-min cycling exercise followed by 5-min rest periods and a subsequent 1-min cycling bout at 125% VO2max/1-min rest periods until exhaustion to deplete muscle glycogen. A diet providing 10% (CHOlow) or 65% (CHOmod) energy as carbohydrates was consumed for 2 days until the day of the experimental test. In the exercise below LT2, time to exhaustion did not differ between the CHOmod and the CHOlow diets (57.22 ± 24.24 vs 57.16 ± 25.24 min). In the exercise above LT2, time to exhaustion decreased significantly from 23.16 ± 8.76 min on the CHOmod diet to 18.30 ± 5.86 min on the CHOlow diet (P < 0.05). The rate of carbohydrate oxidation, respiratory exchange ratio and blood lactate concentration were reduced for CHOlow only during exercise above LT2. These results suggest that muscle glycogen depletion followed by a period of a low carbohydrate diet impairs high-intensity exercise performance.
Resumo:
Although 17β-estradiol (E2) deficiency has been linked to the development of osteoarthritis (OA) in middle-aged women, there are few studies relating other estrogens and estrogen metabolites (EMs) to this condition. We developed a high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (HPLC-ESI-MS/MS) method to measure the levels of six EMs (i.e., estrone, E2, estriol, 2-hydroxyestrone, 2-hydroxyestradiol, and 16a-hydroxyestrone) in healthy pre- and postmenopausal women and women with OA. This method had a precision ranging from 1.1 to 3.1% and a detection limit ranging from 10 to 15 pg. Compared to healthy women, serum-free E2 was lower in the luteal and postmenopausal phases in women with OA, and total serum E2 was lower in postmenopausal women with OA. Moreover, compared to healthy women, total serum 2-hydroxyestradiol was higher in postmenopausal women with OA and total serum 2-hydroxyestrone was lower in both the luteal and follicular phases in women with OA. In conclusion, our HPLC-ESI-MS/MS method allowed the measurement of multiple biochemical targets in a single assay, and, given its increased cost-effectiveness, simplicity, and speed relative to previous methods, this method is suitable for clinical studies.
Resumo:
Magnesium and its alloys have recently been used in the development of lightweight, biodegradable implant materials. However, the corrosion properties of magnesium limit its clinical application. The purpose of this study was to comprehensively evaluate the degradation behavior and biomechanical properties of magnesium materials treated with micro-arc oxidation (MAO), which is a new promising surface treatment for developing corrosion resistance in magnesium, and to provide a theoretical basis for its further optimization and clinical application. The degradation behavior of MAO-treated magnesium was studied systematically by immersion and electrochemical tests, and its biomechanical performance when exposed to simulated body fluids was evaluated by tensile tests. In addition, the cell toxicity of MAO-treated magnesium samples during the corrosion process was evaluated, and its biocompatibility was investigated under in vivo conditions. The results of this study showed that the oxide coating layers could elevate the corrosion potential of magnesium and reduce its degradation rate. In addition, the MAO-coated sample showed no cytotoxicity and more new bone was formed around it during in vivo degradation. MAO treatment could effectively enhance the corrosion resistance of the magnesium specimen and help to keep its original mechanical properties. The MAO-coated magnesium material had good cytocompatibility and biocompatibility. This technique has an advantage for developing novel implant materials and may potentially be used for future clinical applications.
Resumo:
Galactosemia is an inborn error of galactose metabolism that occurs mainly as the outcome of galactose-1-phosphate uridyltransferase (GALT) deficiency. The ability to assess galactose oxidation following administration of a galactose-labeled isotope (1-13C-galactose) allows the determination of galactose metabolism in a practical manner. We aimed to assess the level of galactose oxidation in both healthy and galactosemic Brazilian children. Twenty-one healthy children and seven children with galactosemia ranging from 1 to 7 years of age were studied. A breath test was used to quantitate 13CO2 enrichment in exhaled air before and at 30, 60, and 120 min after the oral administration of 7 mg/kg of an aqueous solution of 1-13C-galactose to all children. The molar ratios of 13CO2 and 12CO2 were quantified by the mass/charge ratio (m/z) of stable isotopes in each air sample by gas-isotope-ratio mass spectrometry. In sick children, the cumulative percentage of 13C from labeled galactose (CUMPCD) in the exhaled air ranged from 0.03% at 30 min to 1.67% at 120 min. In contrast, healthy subjects showed a much broader range in CUMPCD, with values from 0.4% at 30 min to 5.58% at 120 min. The study found a significant difference in galactose oxidation between children with and without galactosemia, demonstrating that the breath test is useful in discriminating children with GALT deficiencies.
Resumo:
As it is a common observation that obesity tends to occur after discontinuation of exercise, we investigated how white adipocytes isolated from the periepididymal fat of animals with interrupted physical training transport and oxidize glucose, and whether these adaptations support the weight regain seen after 4 weeks of physical detraining. Male Wistar rats (45 days old, weighing 200 g) were divided into two groups (n=10): group D (detrained), trained for 8 weeks and detrained for 4 weeks; and group S (sedentary). The physical exercise was carried out on a treadmill for 60 min/day, 5 days/week for 8 weeks, at 50-60% of the maximum running capacity. After the training protocol, adipocytes isolated from the periepididymal adipose tissue were submitted to glucose uptake and oxidation tests. Adipocytes from detrained animals increased their glucose uptake capacity by 18.5% compared with those from sedentary animals (P<0.05). The same cells also showed a greater glucose oxidation capacity in response to insulin stimulation (34.55%) compared with those from the S group (P<0.05). We hypothesize that, owing to the more intense glucose entrance into adipose cells from detrained rats, more substrate became available for triacylglycerol synthesis. Furthermore, this increased glucose oxidation rate allowed an increase in energy supply for triacylglycerol synthesis. Thus, physical detraining might play a role as a possible obesogenic factor for increasing glucose uptake and oxidation by adipocytes.
Resumo:
We collected a series of 136 lung/bronchial and 56 matched lung parenchyma tissue samples from patients who underwent lung/bronchial biopsies and presented invasive carcinoma after lung surgery. The lung/bronchial samples included basal cell hyperplasia, squamous metaplasia, moderate dysplasia, adenomatous hyperplasia, severe dysplasia, squamous cell carcinoma and adenocarcinoma. Matched lung parenchyma tissue samples included 25 squamous cell carcinomas and 31 adenocarcinomas. Immunohistochemistry was performed to analyze for the distribution of hyaluronidase (Hyal)-1 and −3, and hyaluronan synthases (HAS)-1, −2, and −3. Hyal-1 showed significantly higher expression in basal cell hyperplasia than in moderate dysplasia (P=0.01), atypical adenomatous hyperplasia (P=0.0001), or severe dysplasia (P=0.03). Lower expression of Hyal-3 was found in atypical adenomatous hyperplasia than in basal cell hyperplasia (P=0.01) or moderate dysplasia (P=0.02). HAS-2 was significantly higher in severe dysplasia (P=0.002) and in squamous metaplasia (P=0.04) compared with basal cell hyperplasia. HAS-3 was significantly expressed in basal cell hyperplasia compared with atypical adenomatous hyperplasia (P=0.05) and severe dysplasia (P=0.02). Lower expression of HAS-3 was found in severe dysplasia compared with squamous metaplasia (P=0.01) and moderate dysplasia (P=0.01). Epithelial Hyal-1 and −3 and HAS-1, −2, and −3 expressions were significantly higher in pre-neoplastic lesions than in neoplastic lesions. Comparative Cox multivariate analysis controlled by N stage and histologic tumor type showed that patients with high HAS-3 expression in pre-neoplastic cells obtained by lung/bronchial biopsy presented a significantly higher risk of death (HR=1.19; P=0.04). We concluded that localization of Hyal and HAS in lung/bronchial pre-neoplastic and neoplastic lesions was inversely related to malignancy, which implied that visualizing these factors could be a useful diagnostic procedure for suspected lung cancer. Finalizing this conclusion will require a wider study in a randomized and prospective trial.
Resumo:
Ethanol abuse is linked to several acute and chronic injuries that can lead to health problems. Ethanol addiction is one of the most severe diseases linked to the abuse of this drug. Symptoms of ethanol addiction include compulsive substance intake and withdrawal syndrome. Stress exposure has an important role in addictive behavior for many drugs of abuse (including ethanol), but the consequences of stress and ethanol in the organism when these factors are concomitant results in a complex interaction. We investigated the effects of concomitant, chronic administration of ethanol and stress exposure on the withdrawal and consumption of, as well as the preference for, ethanol in mice. Male Swiss mice (30–35 g, 8-10 per group) were exposed to an ethanol liquid diet as the only source of food for 15 days. In the final 5 days, they were exposed to forced swimming stress. Twelve hours after removal of the ethanol liquid diet, animals were evaluated for ethanol withdrawal by measuring anxiety-related behaviors and locomotor activity. Twenty-four hours after evaluation of ethanol withdrawal, they were evaluated for voluntary consumption of ethanol in a “three-bottle choice” paradigm. Mice exposed to chronic consumption of ethanol had decreased locomotor activity during withdrawal. Contrary to our expectations, a concomitant forced swimming stress did not aggravate ethanol withdrawal. Nevertheless, simultaneous ethanol administration and stress exposure increased voluntary consumption of ethanol, mainly solutions containing high concentrations of ethanol. These results showed that stressful situations during ethanol intake may aggravate specific addiction-related behaviors.
Resumo:
Various methods are available for preservation of vascular grafts for pulmonary artery (PA) replacement. Lyophilization and cryopreservation reduce antigenicity and prevent thrombosis and calcification in vascular grafts, so both methods can be used to obtain vascular bioprostheses. We evaluated the hemodynamic, gasometric, imaging, and macroscopic and microscopic findings produced by PA reconstruction with lyophilized (LyoPA) grafts and cryopreserved (CryoPA) grafts in dogs. Eighteen healthy crossbred adult dogs of both sexes weighing between 18 and 20 kg were used and divided into three groups of six: group I, PA section and reanastomosis; group II, PA resection and reconstruction with LyoPA allograft; group III, PA resection and reconstruction with CryoPA allograft. Dogs were evaluated 4 weeks after surgery, and the status of the graft and vascular anastomosis were examined macroscopically and microscopically. No clinical, radiologic, or blood-gas abnormalities were observed during the study. The mean pulmonary artery pressure (MPAP) in group III increased significantly at the end of the study compared with baseline (P=0.02) and final [P=0.007, two-way repeat-measures analysis of variance (RM ANOVA)] values. Pulmonary vascular resistance of groups II and III increased immediately after reperfusion and also at the end of the study compared to baseline. The increase shown by group III vs group I was significant only if compared with after surgery and study end (P=0.016 and P=0.005, respectively, two-way RM ANOVA). Microscopically, permeability was reduced by ≤75% in group III. In conclusion, substitution of PAs with LyoPA grafts is technically feasible and clinically promising.
Antioxidant activity of rosemary and oregano ethanol extracts in soybean oil under thermal oxidation
Resumo:
Four experiments were conducted to measure the antioxidant activity of ethanol extracts of rosemary and oregano compared with synthetic antioxidants such as TBHQ and BHA/BHT. The antioxidant activity was determined and results differed from those of the Oven test at 63º C. Peroxide values and absorptivities at 232 nm of soybean oil under Oven test were lower in treatments with 25, 50, 75, 100 and 200 mg.Kg-1 TBHQ than in treatments with 1000 mg.Kg-1 oregano extract (O), 500 mg.Kg-1 rosemary extract (R) and their mixture R+O. All the treatments were effective in controlling the thermal oxidation of oils; the natural extracts were as effective as BHA+BHT and less effective than TBHQ. The natural extracts were mixed with 25, 50, 75 and 100 mg.Kg-1 TBHQ and then added to the oil. No improvement in antioxidative properties was observed. The best antioxidant concentration could be determined from polynomial regression and quadratic equation from the experimental data.