914 resultados para population genetic structure
Resumo:
As part of the global sheep Hapmap project, 24 individuals from each of seven indigenous Swiss sheep breeds (Bundner Oberländer sheep (BOS), Engadine Red sheep (ERS), Swiss Black-Brown Mountain sheep (SBS), Swiss Mirror sheep (SMS), Swiss White Alpine (SWA) sheep, Valais Blacknose sheep (VBS) and Valais Red sheep (VRS)), were genotyped using Illumina’s Ovine SNP50 BeadChip. In total, 167 animals were subjected to a detailed analysis for genetic diversity using 45 193 informative single nucleotide polymorphisms. The results of the phylogenetic analyses supported the known proximity between populations such as VBS and VRS or SMS and SWA. Average genomic relatedness within a breed was found to be 12 percent (BOS), 5 percent (ERS), 9 percent (SBS), 10 percent (SMS), 9 percent (SWA), 12 percent (VBS) and 20 percent (VRS). Furthermore, genomic relationships between breeds were found for single individuals from SWA and SMS, VRS and VBS as well as VRS and BOS. In addition, seven out of 40 indicated parent–offspring pairs could not be confirmed. These results were further supported by results from the genome-wide population cluster analysis. This study provides a better understanding of fine-scale population structures within and between Swiss sheep breeds. This relevant information will help to increase the conservation activities of the local Swiss sheep breeds.
Resumo:
Using allozymes and mtDNA sequences from the cytochrome b gene, we report that the brown kiwi has the highest levels of genetic structuring observed in birds. Moreover, the mtDNA sequences are, with two minor exceptions, diagnostic genetic markers for each population investigated, even though they are among the more slowly evolving coding regions in this genome. A major unexpected finding was the concordant split in molecular phylogenies between brown kiwis in the southern South Island and elsewhere in New Zealand. This basic phylogeographic boundary halfway down the South Island coincides with a fixed allele difference in the Hb nuclear locus and strongly suggests that two morphologically cryptic species are currently merged under one polytypic species. This is another striking example of how molecular genetic assays can detect phylogenetic discontinuities that are not reflected in traditional morphologically based taxonomies. However, reanalysis of the morphological characters by using phylogenetic methods revealed that the reason for this discordance is that most are primitive and thus are phylogenetically uninformative. Shared-derived morphological characters support the same relationships evident in the molecular phylogenies and, in concert with the molecular data, suggest that as brown kiwis colonized northward from the southern South Island, they retained many primitive characters that confounded earlier systematists. Strong subdivided population structure and cryptic species in brown kiwis seem to have evolved relatively recently as a consequence of Pleistocene range disjunctions, low dispersal power, and genetic drift in small populations.
Resumo:
Although most of the Papua New Guinea highlands are too high for stable malaria transmission, local epidemics are a regular feature of the region. Few detailed descriptions of such epidemics are available, however. We describe the investigation of a malaria epidemic in the Obura Valley, Eastern Highlands Province, Papua New Guinea. Of the 244 samples examined by microscopy, 6.6% were positive for Plasmodium falciparum only, 9.4% were positive for Plasmodium vivax only, and 1.2% were mixed infections. MSP2 and MSP3alpha genotyping and AMA1 sequencing were used to determine the genetic variation present in a sample of P. falciparum and P. vivax infections. The P. vivax infections were found to be genetically highly diverse. In contrast, all P. falciparum samples were of a single genotype. This striking difference in genetic diversity suggests endemic, low-level local transmission for P. vivax but an outside introduction of P. falciparum as the most likely source of the epidemic.
Resumo:
Ochlerotatus notoscriptus (Skuse) (Diptera: Culicidae) is the predominant peridomestic mosquito in Australia where it is the primary vector of dog heartworm, Dirofilaria immitis (Leidy), and a potentially important vector of arboviruses (Barmah Forest, Ross River) with geographical variation of vector competence. Although widespread, Oc. notoscriptus has low dispersal ability, so it may have isolated subpopulations. The identification of gene flow barriers may assist in understanding arbovirus epidemiology and disease risk, and for developing control strategies for this species. We investigated the population structure of Oc. notoscriptus from 17 sites around Australia, using up to 31 putative allozyme loci, 11 of which were polymorphic. We investigated the effect of larval environment and adult morphology on genetic variation. At least five subpopulations were found, four in New South Wales (NSW) and one unique to Darwin. Perth samples appear to be a product of recent colonization from the Australian east coast. For NSW sites, a Mantel test revealed an isolation by distance effect and spatial autocorrelation analysis revealed an area of effective gene flow of 67 km, which is high given the limited dispersal ability of this species. No consistent difference was observed between 'urban' and 'sylvan' habitats, which suggests frequent movement between these sites. However, a finer-scaled habitat study at Darwin revealed small but significant allele frequency differences, including for Gpi. No fixed allozyme differences were detected for sex, size, integument colour or the colour of species-diagnostic pale scales on the scutum. The domestic habit of Oc. notoscriptus and assisted dispersal have helped to homogenize this species geographically but population structure is still detectable on several levels associated with geographical variation of vector competence.
Resumo:
Population measures for genetic programs are defined and analysed in an attempt to better understand the behaviour of genetic programming. Some measures are simple, but do not provide sufficient insight. The more meaningful ones are complex and take extra computation time. Here we present a unified view on the computation of population measures through an information hypertree (iTree). The iTree allows for a unified and efficient calculation of population measures via a basic tree traversal. © Springer-Verlag 2004.
Resumo:
Genetic diversity can be used to describe patterns of gene flow within and between local and regional populations. The Florida Everglades experiences seasonal fluctuations in water level that can influence local population extinction and recolonization dynamics. In addition, this expansive wetland has been divided into water management regions by canals and levees. These combined factors can affect genetic diversity and population structure of aquatic organisms in the Everglades. We analyzed allelic variation at six DNA microsatellite loci to examine the population structure of spotted sunfish (Lepomis punctatus) from the Everglades. We tested the hypothesis that recurrent local extinction and recent regional divisions have had an effect on patterns of genetic diversity. No marked differences were observed in comparisons of the heterozygosity values of sites within and among water management units. No evidence of isolation by distance was detected in a gene flow and distance correlation between subpopulations. Confidence intervals for the estimated F-statistic values crossed zero, indicating that there was no significant genetic difference between subpopulations within a region or between regions. Notably, the genetic variation among subpopulations in a water conservation area was greater than variation among regions (Fsp>FPT). These data indicate that the spatial scale of recolonization following local extinction appears to be most important within water management units.
Resumo:
Juniperus navicularis Gand. is a dioecious endemic conifer that constitutes the understory of seaside pine forests in Portugal, areas currently threatened by increasing urban expansion. The aim of this study is to assess the conservation status of previously known populations of this species located on its core area of distribution. The study was performed in south-west coast of Portugal. Three populations varying in size and pine density were analyzed. Number of individuals, population density, spatial distribution and individual characteristics of junipers were estimated. Female cone, seed characteristics and seed viability were also evaluated. Results suggest that J. navicularis populations are vulnerable because seminal recruitment is scarce, what may lead to a reduction of genetic variability due solely to vegetative propagation. This vulnerability seems to be strongly determined by climatic constraints toward increasing aridity. Ratio between male and female shrubs did not differ from 1:1 in any population. Deviations from 1:1 between mature and non-mature plants were found in all populations, denoting population ageing. Very low seed viability was observed. A major part of described Juniperus navicularis populations have disappeared through direct habitat loss to urban development, loss of fitness in drier and warmer locations and low seed viability. This study is the first to address J. navicularis conservation, and represents a valuable first step toward this species preservation.
Resumo:
Coastal lagoons are highly variable environments that may act as hotspots of genetic diversity as a consequence of their ecological role as nursery habitats of marine species with both ecological and fisheries importance. The edible cockle (Cerastoderma edule) is a commercially important shellfish resource inhabiting coastal lagoons in Europe and their fisheries management urgently needs genetic studies to design appropriate strategies to promote the recovery of exploited populations. The aim of this study was to assess the C. edule genetic diversity and population structure at a small geographic scale, inside Ria Formosa coastal lagoon (southern Portugal) using mitochondrial cytochrome oxidase I sequences in six locations. Outcomes pointed to a common pattern of high haplotype diversity and non-significant genetic structuring inside the Ria Formosa lagoon. A high level of gene flow was detected between all localities and the presence of a single stock from a genetic point of view may be considered for fisheries management purposes. The existence of a high number of haplotypes and high values of haplotype diversity of C. edule in Ria Formosa lagoon could be consistent with the hypothesis that higher genetic diversity is expected in populations occurring in coastal lagoons, suggesting that lagoons could increase standing genetic variation and an adaptive potential of lagoon populations as an ecological response to a highly variable environment.
Resumo:
Juniperus navicularis Gand. is a dioecious endemic conifer that constitutes the understory of seaside pine forests in Portugal, areas currently threatened by increasing urban expansion. The aim of this study is to assess the conservation status of previously known populations of this species located on its core area of distribution. The study was performed in south-west coast of Portugal. Three populations varying in size and pine density were analyzed. Number of individuals, population density, spatial distribution and individual characteristics of junipers were estimated. Female cone, seed characteristics and seed viability were also evaluated. Results suggest that J. navicularis populations are vulnerable because seminal recruitment is scarce, what may lead to a reduction of genetic variability due solely to vegetative propagation. This vulnerability seems to be strongly determined by climatic constraints toward increasing aridity. Ratio between male and female shrubs did not differ from 1:1 in any population. Deviations from 1:1 between mature and non-mature plants were found in all populations, denoting population ageing. Very low seed viability was observed. A major part of described Juniperus navicularis populations have disappeared through direct habitat loss to urban development, loss of fitness in drier and warmer locations and low seed viability. This study is the first to address J. navicularis conservation, and represents a valuable first step toward this species preservation.
Resumo:
Investigating stock identity of marine species in a multidisciplinary holistic approach can reveal patterns of complex spatial population structure and signatures of potential local adaptation. The population structure of common sole (Solea solea) in the Mediterranean Sea was delineated using genomic and otolith data, including single nucleotide polymorphisms (SNPs) markers and otolith data. SNPs were correlated with environmental and spatial variables to evaluate the impact of these features on the actual genetic population structure. Integrated holistic approach was applied to combine the tracers with different spatio-temporal scales. SNPs data was also used to illustrate the population structure of European hake (Merluccius merluccius) within the Alboran Sea, extending into the neighboring Mediterranean Sea and Atlantic Ocean. The aim was to identify patterns of neutral and potential adaptive genetic variation by applying seascape genomic framework. Results from both genetic and otolith data suggested significant divergence among putative populations of common sole, confirming a clear separation between Western, Adriatic Sea and Eastern Mediterranean Sea. Evidence of fine-scale population structure in the Western Mediterranean Sea was observed at outlier loci level and in the Adriatic. Our study not only indicates that separation among Mediterranean sole population is led primarily by neutral processes, but it also suggests the presence of local adaptation influenced by environmental and spatial factors. The holistic approach by considering the spatio-temporal scales of variation confirmed that the same pattern of separation between these geographical sites is currently occurring and has occurred for many generations. Results showed the occurrence of population structure in Merluccius merluccius by detecting westward–eastward differentiation among populations and distinct subgroups at a fine geographical scale using outlier SNPs. These results enhance the knowledge of the population structure of commercially relevant species to support the application of spatial stock assessment models, including a redefinition of fishery management units.
Resumo:
Population structure of the lancelet Branchiostoma caribaeum Sandevall, 1853 was studied in four surveys, corresponding to austral seasons, in a tropical bay, southeast of Brazil. Abundance was higher in the spring and was positively correlated to coarse sediments, limiting its occurrence to some sectors of the sampling area. Body length and biomass differed seasonally but not between sexes. Sexually mature individuals occurred in all seasons, suggesting continuous breeding that is typical of tropical species. Variation in the frequency of small specimens indicates temporal differences in the intensity of breeding. The body length of recruits differed from other population of lancelets and the small length which B. caribaeum attained sexual maturity in Guanabara Bay may be related to local environmental stress or the great availability of food.
Resumo:
Variation among natural populations of Culex (Culex) quinquefasciatus Say is associated with different vectorial capacities. The species Cx. quinquefasciatus is present in the equatorial, tropical and subtropical zones in the Brazilian territory, with intermediate forms between Cx. quinquefasciatus and Culex pipiens occurring in regions of latitudes around 33°-35°S. Herein, we studied geographically distinct populations of Cx. quinquefasciatus by genetic characterization and analysis of intra-specific wing morphometrics. After morphological analysis, molecular characterization of Cx. quinquefasciatus and intermediate forms was performed by polymerase chain reaction of the polymorphic nuclear region of the second intron of the acetylcholinesterase locus. Additionally, the morphology of adult female wings collected from six locations was analyzed. Wing centroid sizes were significantly different between some geographical pairs. Mean values of R2/R2+3 differed significantly after pairwise comparisons. The overall wing shape represented by morphometric characters could be divided into two main groupings. Our data suggest that Brazilian samples are morphologically and genetically distinct from the Argentinean samples and also indicated a morphological distinction between northern and southern populations of Brazilian Cx. quinquefasciatus. We suggest that wing morphology may be used for preliminary assessment of population structure of Cx. quinquefasciatusin Brazil
Resumo:
Though the replacement of European bees by Africanized honey bees in tropical America has attracted considerable attention, little is known about the temporal changes in morphological and genetic characteristics in these bee populations. We examined the changes in the morphometric and genetic profiles of an Africanized honey bee population collected near where the original African swarms escaped, after 34 years of Africanization. Workers from colonies sampled in 1968 and in 2002 were morphometrically analyzed using relative warps analysis and an Automatic Bee Identification System (ABIS). All the colonies had their mitochondrial DNA identified. The subspecies that mixed to form the Africanized honey bees were used as a comparison for the morphometric analysis. The two morphometric approaches showed great similarity of Africanized bees with the African subspecies, Apis mellifera scutellata, corroborating with other markers. We also found the population of 1968 to have the pattern of wing venation to be more similar to A. m. scutellata than the current population. The mitochondrial DNA of European origin, which was very common in the 1968 population, was not found in the current population, indicating selective pressure replacing the European with the African genome in this tropical region. Both morphometric methodologies were very effective in discriminating the A. mellifera groups; the non-linear analysis of ABIS was the most successful in identifying the bees, with more than 94% correct classifications.
Resumo:
The freshwater prawn Macrobrachium amazonicum is widely distributed in South America, and occupies habitats with a wide range of salinities. Several investigations have revealed the existence of wide intraspecific variability among different populations, although the understanding of this variability is still fragmentary and incomplete. We compared and characterized inland and coastal populations of M. amazonicum from Brazil, using molecular data (16S and COI mtDNA) to describe the degree of variability, structure, and relationships among them. Genetic divergence rates among populations showed variability at the intraspecific level. All the analyses evidenced significant genetic divergence among populations, structuring them in three groups: I-inland waters of the Amazonian Hydrographic Region (HR); II-Parana/Paraguay HR; and III-coastal systems of northern and northeastern Brazil. Phylogenetic reconstructions revealed that the populations form a single monophyletic clade, which supports their characterization as a single species. Clade I was a sister clade of that formed by clades II and III, which were themselves sister clades. Populations from Sertaozinho/Miguelopolis and Avare, introduced into the state of Sao Paulo, may have originated from natural populations in the states of Mato Grosso do Sul and Para, respectively. Geographical isolation probably contributed to the observed variation, and if this isolation continues. M. amazonicum may undergo speciation within its broad geographical distribution. The sequences obtained here can be used as name-tags for population identification, and the DNA barcodes are useful to identify the origin of specimens used in different freshwater-prawn cultures or introduced populations of unknown origin.
Resumo:
Background: The rapid progress currently being made in genomic science has created interest in potential clinical applications; however, formal translational research has been limited thus far. Studies of population genetics have demonstrated substantial variation in allele frequencies and haplotype structure at loci of medical relevance and the genetic background of patient cohorts may often be complex. Methods and Findings: To describe the heterogeneity in an unselected clinical sample we used the Affymetrix 6.0 gene array chip to genotype self-identified European Americans (N = 326), African Americans (N = 324) and Hispanics (N = 327) from the medical practice of Mount Sinai Medical Center in Manhattan, NY. Additional data from US minority groups and Brazil were used for external comparison. Substantial variation in ancestral origin was observed for both African Americans and Hispanics; data from the latter group overlapped with both Mexican Americans and Brazilians in the external data sets. A pooled analysis of the African Americans and Hispanics from NY demonstrated a broad continuum of ancestral origin making classification by race/ethnicity uninformative. Selected loci harboring variants associated with medical traits and drug response confirmed substantial within-and between-group heterogeneity. Conclusion: As a consequence of these complementary levels of heterogeneity group labels offered no guidance at the individual level. These findings demonstrate the complexity involved in clinical translation of the results from genome-wide association studies and suggest that in the genomic era conventional racial/ethnic labels are of little value.