896 resultados para plasma glucose


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neuropeptide Y (NPY) is a vasoconstrictor peptide possibly involved in the regulation of renal sodium handling and renin release. This investigation was undertaken to assess in conscious normotensive rats the acute effects of a non-pressor dose of NPY on renal plasma flow, glomerular filtration rate, sodium excretion and plasma renin activity. Experiments were also performed during concomitant beta-adrenoceptor stimulation with isoproterenol. NPY per se had no effect on the studied parameters. Renal plasma flow was increased by isoproterenol and was significantly higher when the beta-adrenoceptor stimulant was infused alone (13.4 +/- 2.1 ml/min, p < 0.05, mean +/- SEM) that when administered together with NPY (7.2 +/- 2.0 ml/min). This was also true for glomerular filtration rate (3.3 +/- 0.3 vs. 1.8 +/- 0.3 ml/min, p < 0.01) and plasma renin activity (6.3 +/- 1.7 vs. 2.1 +/- 0.4 ng Ang I/ml/h, p < 0.05). Our data however do not allow to deduce whether the inhibitory effect of NPY on isoproterenol-induced renin release is mediated by changes in intrarenal hemodynamics or a direct effect on juxtaglomerular cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: To evaluate the relative importance of increased lactate production as opposed to decreased utilization in hyperlactatemic patients, as well as their relation to glucose metabolism. DESIGN: Prospective observational study. SETTING: Surgical intensive care unit of a university hospital. PATIENTS: Seven patients with severe sepsis or septic shock, seven patients with cardiogenic shock, and seven healthy volunteers. INTERVENTIONS: C-labeled sodium lactate was infused at 10 micromol/kg/min and then at 20 micromol/kg/min over 120 mins each. H-labeled glucose was infused throughout. MEASUREMENTS AND MAIN RESULTS: Baseline arterial lactate was higher in septic (3.2 +/- 2.6) and cardiogenic shock patients (2.8 +/- 0.4) than in healthy volunteers (0.9 +/- 0.20 mmol/L, p < .05). Lactate clearance, computed using pharmacokinetic calculations, was similar in septic, cardiogenic shock, and controls, respectively: 10.8 +/- 5.4, 9.6 +/- 2.1, and 12.0 +/- 2.6 mL/kg/min. Endogenous lactate production was determined as the initial lactate concentration multiplied by lactate clearance. It was markedly enhanced in the patients (septic 26.2 +/- 10.5; cardiogenic shock 26.6 +/- 5.1) compared with controls (11.2 +/- 2.7 micromol/kg/min, p < .01). C-lactate oxidation (septic 54 +/- 25; cardiogenic shock 43 +/- 16; controls 65 +/- 15% of a lactate load of 10 micromol/kg/min) and transformation of C-lactate into C-glucose were not different (respectively, 15 +/- 15, 9 +/- 18, and 10 +/- 7%). Endogenous glucose production was markedly increased in the patients (septic 14.8 +/- 1.8; cardiogenic shock 15.0 +/- 1.5) compared with controls (7.2 +/- 1.1 micromol/kg/min, p < .01) and was not influenced by lactate infusion. CONCLUSIONS: In patients suffering from septic or cardiogenic shock, hyperlactatemia was mainly related to increased production, whereas lactate clearance was similar to healthy subjects. Increased lactate production was concomitant to hyperglycemia and increased glucose turnover, suggesting that the latter substantially influences lactate metabolism during critical illness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glut-2 is a low-affinity transporter present in the plasma membrane of pancreatic beta-cells, hepatocytes and intestine and kidney absorptive epithelial cells of mice. In beta-cells, Glut-2 has been proposed to be active in the control of glucose-stimulated insulin secretion (GSIS; ref. 2), and its expression is strongly reduced in glucose-unresponsive islets from different animal models of diabetes. However, recent investigations have yielded conflicting data on the possible role of Glut-2 in GSIS. Whereas some reports have supported a specific role for Glut-2 (refs 5,6), others have suggested that GSIS could proceed normally even in the presence of low or almost undetectable levels of this transporter. Here we show that homozygous, but not heterozygous, mice deficient in Glut-2 are hyperglycaemic and relatively hypo-insulinaemic and have elevated plasma levels of glucagon, free fatty acids and beta-hydroxybutyrate. In vivo, their glucose tolerance is abnormal. In vitro, beta-cells display loss of control of insulin gene expression by glucose and impaired GSIS with a loss of first phase but preserved second phase of secretion, while the secretory response to non-glucidic nutrients or to D-glyceraldehyde is normal. This is accompanied by alterations in the postnatal development of pancreatic islets, evidenced by an inversion of the alpha- to beta-cell ratio. Glut-2 is thus required to maintain normal glucose homeostasis and normal function and development of the endocrine pancreas. Its absence leads to symptoms characteristic of non-insulin-dependent diabetes mellitus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Epimastigote and trypomastigote forms of Trypanosoma cruzi attach to the macrophage surface and are internalized with the formation of a membrane bounded vacuole, known as the parasitophorous vacuole (PV). In order to determine if components of the host cell membrane are internalized during formation of the PV we labeled the macrophage surface with fluorescent probes for proteins, lipids and sialic acid residues and then allowed the labeled cells to interact with the parasites. The interaction process was interrupted after 1 hr at 37ºC and the distribution of the probes analyzed by confocal laser scanning microscopy. During attachment of the parasites to the macrophage surface an intense labeling of the attachment regions was observed. Subsequently labeling of the membrane lining the parasitophorous vacuole containing epimastigote and trypomastigote forms was seen. Labeling was not uniform, with regions of intense and light or no labeling. The results obtained show that host cell membrane lipids, proteins and sialoglycoconjugates contribute to the formation of the membrane lining the PV containing epimastigote and trypomastigote T. cruzi forms. Lysosomes of the host cell may participate in the process of PV membrane formation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Immunotherapy with monoclonal and polyclonal immunoglobulin is successfully applied to improve many clinical conditions, including infection, autoimmune diseases, or immunodeficiency. Most immunoglobulin products, recombinant or plasma-derived, are based on IgG antibodies, whereas to date, the use of IgA for therapeutic application has remained anecdotal. In particular, purification or production of large quantities of secretory IgA (SIgA) for potential mucosal application has not been achieved. In this work, we sought to investigate whether polymeric IgA (pIgA) recovered from human plasma is able to associate with secretory component (SC) to generate SIgA-like molecules. We found that ∼15% of plasma pIgA carried J chain and displayed selective SC binding capacity either in a mixture with monomeric IgA (mIgA) or after purification. The recombinant SC associated covalently in a 1:1 stoichiometry with pIgA and with similar efficacy as colostrum-derived SC. In comparison with pIgA, the association with SC delayed degradation of SIgA by intestinal proteases. Similar results were obtained with plasma-derived IgM. In vitro, plasma-derived IgA and SIgA neutralized Shigella flexneri used as a model pathogen, resulting in a delay of bacteria-induced damage targeted to polarized Caco-2 cell monolayers. The sum of these novel data demonstrates that association of plasma-derived IgA or IgM with recombinant/colostrum-derived SC is feasible and yields SIgA- and SIgM-like molecules with similar biochemical and functional characteristics as mucosa-derived immunoglobulins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The oxidative and nonoxidative glucose metabolism represent the two major mechanisms of the utilization of a glucose load. Eight normal subjects were administered oral loads of 50, 100 and 150 g glucose and gas exchange measurements were performed for eight hours by means of computerized continuous indirect calorimetry. The glycemic peaks were almost identical with all three doses with a rise to between 141 and 147 mg/dl at 60 min. The fall back to basal level was reached later with the high than with the low glucose doses. The glucose oxidation rate rose to values between 223 and 253 mg/min after the three glucose doses, but while falling immediately after the peak at 120 min following the 50 g load, the glucose oxidation rate remained at its maximum rate until 210 min for the 100 g glucose load and plateaued up to 270 min for the 150 g glucose dose. The oxidation rates then fell gradually to reach basal levels at 270, 330 and 420 min according to the increasing size of the load. Altogether 55 +/- 3 g glucose were oxidized during the 8 hours following the 50 g glucose load, 75 +/- 3 g after the 100 g load and 80 +/- 5 g after the 150 g load. The nonoxidative glucose disposal, which corresponds essentially to glucose storage, varied according to the size of the glucose load, with uptakes of 20 +/- 1, 60 +/- 1 and 110 +/- 1 g glucose 180 min after the 50, 100 and 150 g glucose loads respectively.(ABSTRACT TRUNCATED AT 250 WORDS)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AIMS/HYPOTHESIS: Excess glucose transport to embryos during diabetic pregnancy causes congenital malformations. The early postimplantation embryo expresses the gene encoding the high-Km GLUT2 (also known as SLC2A2) glucose transporter. The hypothesis tested here is that high-Km glucose transport by GLUT2 causes malformations resulting from maternal hyperglycaemia during diabetic pregnancy. MATERIALS AND METHODS: Glut2 mRNA was assayed by RT-PCR. The Km of embryo glucose transport was determined by measuring 0.5-20 mmol/l 2-deoxy[3H]glucose transport. To test whether the GLUT2 transporter is required for neural tube defects resulting from maternal hyperglycaemia, Glut2+/- mice were crossed and transient hyperglycaemia was induced by glucose injection on day 7.5 of pregnancy. Embryos were recovered on day 10.5, and the incidence of neural tube defects in wild-type, Glut2+/- and Glut2-/- embryos was scored. RESULTS: Early postimplantation embryos expressed Glut2, and expression was unaffected by maternal diabetes. Moreover, glucose transport by these embryos showed Michaelis-Menten kinetics of 16.19 mmol/l, consistent with transport mediated by GLUT2. In pregnancies made hyperglycaemic on day 7.5, neural tube defects were significantly increased in wild-type embryos, but Glut2+/- embryos were partially protected from neural tube defects, and Glut2-/- embryos were completely protected from these defects. The frequency of occurrence of wild-type, Glut2+/- and Glut2-/- embryos suggests that the presence of Glut2 alleles confers a survival advantage in embryos before day 10.5. CONCLUSIONS/INTERPRETATIONS: High-Km glucose transport by the GLUT2 glucose transporter during organogenesis is responsible for the embryopathic effects of maternal diabetes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Treball de recerca experimental, prospectiu sense grup control on s’han inclòs 30 pacients als quals s’ha realitzat tractament amb plasma ric en plaquetes (PRP) en genolls amb artrosi moderada per tal d’avaluar el possible benefici en quant a dolor i situació funcional, mitjançant la valoració de l’escala EVA y els tests funcionals SF-36 i KOOS amb controls al mes i tres mesos posteriors a la finalització del tractament.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Concentrations of total (R) + (S) and of the enantiomers (R) and (S) of thioridazine and metabolites were measured in 21 patients who were receiving 100 mg thioridazine for 14 days and who were comedicated with moclobemide (450 mg/day). Two patients were poor metabolizers of dextromethorphan and one was a poor metabolizer of mephenytoin. Cytochrome P450IID6 (CYP2D6) is involved in the formation of thioridazine 2-sulfoxide (2-SO) from thioridazine and also probably partially in the formation of thioridazine 5-sulfoxide (5-SO), but not in the formation of thioridazine 2-sulfone (2-SO2) from thioridazine 2-SO. Significant correlations between the mephenytoin enantiomeric ratio and concentrations of thioridazine and metabolites suggest that cytochrome P450IIC19 could contribute to the biotransformation of thioridazine into yet-unknown metabolites, other than thioridazine 2-SO, thioridazine 2-SO2, or thioridazine 5-SO. An enantioselectivity and a large interindividual variability in the metabolism of thioridazine have been shown: measured (R)/(S) ratios of thioridazine, thioridazine 2-SO fast eluting (FE), thioridazine 2-SO slow eluting (SE), thioridazine 2-SO (FE+SE), thioridazine 2-SO2, thioridazine 5-SO(FE), and thioridazine 5-SO(SE) were (mean +/- SD) 3.48 +/- 0 .93 (range, 2.30 to 5.80), 0.45 +/- 0.22 (range, 0.21 to 1.20), 2.27 +/- 8.1 (range, 6.1 to 40.1), 4.64 +/- 0.68 (range, 2.85 to 5.70), 3.26 +/- 0.58 (range, 2.30 to 4.30), 0.049 +/- 0.019 (range, (0.021 to 0.087), and 67.2 +/- 66.2 (range, 16.8 to 248), respectively. CYP2D6 is apparently involved in the formation of (S)-thioridazine 2-SO(FE), (R)-thioridazine 2-SO(SE), and also probably (S)-thioridazine 5-SO(FE) and (R)-thioridazine 5-SO(SE).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Peripheral arterial disease (PAD) is a common disease with increasing prevalence, presenting with impaired walking ability affecting patient's quality of life. PAD epidemiology is known, however, mechanisms underlying functional muscle impairment remain unclear. Using a mouse PAD model, aim of this study was to assess muscle adaptive responses during early (1 week) and late (5 weeks) disease stages. Unilateral hindlimb ischemia was induced in ApoE(-/-) mice by iliac artery ligation. Ischemic limb perfusion and oxygenation (Laser Doppler imaging, transcutaneous oxygen pressure assessments) significantly decreased during early and late stage compared to pre-ischemia, however, values were significantly higher during late versus early phase. Number of arterioles and arteriogenesis-linked gene expression increased at later stage. Walking ability, evaluated by forced and voluntary walking tests, remained significantly decreased both at early and late phase without any significant improvement. Muscle glucose uptake ([18F]fluorodeoxyglucose positron emission tomography) significantly increased during early ischemia decreasing at later stage. Gene expression analysis showed significant shift in muscle M1/M2 macrophages and Th1/Th2 T cells balance toward pro-inflammatory phenotype during early ischemia; later, inflammatory state returned to neutrality. Muscular M1/M2 shift inhibition by a statin prevented impaired walking ability in early ischemia. High-energy phosphate metabolism remained unchanged (31-Phosphorus magnetic resonance spectroscopy). Results show that rapid transient muscular inflammation contributes to impaired walking capacity while increased glucose uptake may be a compensatory mechanisms preserving immediate limb viability during early ischemia in a mouse PAD model. With time, increased ischemic limb perfusion and oxygenation assure muscle viability although not sufficiently to improve walking impairment. Subsequent decreased muscle glucose uptake may partly contribute to chronic walking impairment. Early inflammation inhibition and/or late muscle glucose impairment prevention are promising strategies for PAD management.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hypoglycaemia is a major cause of neonatal morbidity and may induce long-term developmental sequelae. Clinical signs of hypoglycaemia in neonatal infants are unspecific or even absent, and therefore, precise and accurate methods for the assessment of glycaemia are needed. Glycaemia measurement in newborns has some particularities like a very low limit of normal glucose concentration compared to adults and a large range of normal haematocrit values. Many bedside point-of-care testing (POCT) systems are available, but literature about their accuracy in newborn infants is scarce and not very convincing. In this retrospective study, we identified over a 1-year study period 1,324 paired glycaemia results, one obtained at bedside with one of three different POCT systems (Elite? XL, Ascensia? Contour? and ABL 735) and the other in the central laboratory of the hospital with the hexokinase reference method. All three POCT systems tended to overestimate glycaemia values, and none of them fulfilled the ISO 15197 accuracy criteria. The Elite XL appeared to be more appropriate than Contour to detect hypoglycaemia, however with a low specificity. Contour additionally showed an important inaccuracy with increasing haematocrit. The bench analyzer ABL 735 was the most accurate of the three tested POCT systems. Both of the tested handheld glucometers have important drawbacks in their use as screening tools for hypoglycaemia in newborn infants. ABL 735 could be a valuable alternative, but the blood volume needed is more than 15 times higher than for handheld glucometers. Before daily use in the newborn population, careful clinical evaluation of each new POCT system for glucose measurement is of utmost importance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In pancreatic beta-cells, the high Km glucose transporter GLUT2 catalyzes the first step in glucose-induced insulin secretion by glucose uptake. Expression of the transporter has been reported to be modulated by glucose either at the protein or mRNA levels. In this study we used the differentiated insulinoma cell line INS-1 which expresses high levels of GLUT2 and show that the expression of GLUT2 is regulated by glucose at the transcriptional level. By run-on transcription assays we showed that glucose induced GLUT2 gene transcription 3-4-fold in INS-1 cells which was paralleled by a 1.7-2.3-fold increase in cytoplasmic GLUT2 mRNA levels. To determine whether glucose regulatory sequences were present in the promoter region of GLUT2, we cloned and characterized a 1.4-kilobase region of mouse genomic DNA located 5' of the translation initiation site. By RNase protection assays and primer extension, we determined that multiple transcription initiation sites were present at positions -55, -64, and -115 from the first coding ATG and which were identified in liver, intestine, kidney, and beta-cells mRNAs. Plasmids were constructed with the mouse promoter region linked to the reporter gene chloramphenicol acetyltransferase (CAT), and transiently and stably transfected in the INS-1 cells. Glucose induced a concentration-dependent increase in CAT activity which reached a maximum of 3.6-fold at 20 mM glucose. Similar CAT constructs made of the human GLUT2 promoter region and the CAT gene displayed the same glucose-dependent increase in transcriptional activity when transfected into INS-1 cells. Comparison of the mouse and human promoter regions revealed sequence identity restricted to a few stretches of sequences which suggests that the glucose responsive element(s) may be conserved in these common sequences.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. Respiratory alkalosis accompanies the clinical syndrome of tetany, precipitates cardiac arrhythmias and predisposes to coronary vasoconstriction. Magnesium plays a critical role in the maintenance of membrane function, and magnesium depletion is often associated with cardiac arrhythmias or vasoconstriction. 2. As technology for detecting circulating ionized magnesium (the most interesting form with respect to physiological and biological properties) is now available in the form of new magnesium-selective electrodes, the effect of respiratory alkalosis induced by voluntary overbreathing for 30 min on circulating ionized magnesium was studied in eight healthy subjects. 3. The total plasma magnesium concentration was not modified by hyperventilation. On the contrary, hyperventilation was associated with a significant reduction in the ionized magnesium concentration of 0.05 (0.02-0.15) mmol/l (median and range) and in the free magnesium fraction of 0.06 (0.01-0.19). During hyperventilation the relative intravascular magnesium mass, calculated from changes in total plasma magnesium concentration and haematocrit, decreased significantly. 4. It is concluded that acute overbreathing reduces the circulating ionized magnesium concentration and the intravascular magnesium mass. It is therefore conceivable that extracellular magnesium deficiency is at least a subsidiary cause of the syndrome of tetany and the cardiac complications that are precipitated by hyperventilation.