936 resultados para pitch interpolation
Resumo:
Suprathermal electrons (>70 eV) form a small fraction of the total solar wind electron density but serve as valuable tracers of heliospheric magnetic field topology. Their usefulness as tracers of magnetic loops with both feet rooted on the Sun, however, most likely fades as the loops expand beyond some distance owing to scattering. As a first step toward quantifying that distance, we construct an observationally constrained model for the evolution of the suprathermal electron pitch-angle distributions on open field lines. We begin with a near-Sun isotropic distribution moving antisunward along a Parker spiral magnetic field while conserving magnetic moment, resulting in a field-aligned strahl within a few solar radii. Past this point, the distribution undergoes little evolution with heliocentric distance. We then add constant (with heliocentric distance, energy, and pitch angle) ad-hoc pitch-angle scattering. Close to the Sun, pitch-angle focusing still dominates, again resulting in a narrow strahl. Farther from the Sun, however, pitch-angle scattering dominates because focusing is effectively weakened by the increasing angle between the magnetic field direction and intensity gradient, a result of the spiral field. We determine the amount of scattering required to match Ulysses observations of strahl width in the fast solar wind, providing an important tool for inferring the large-scale properties and topologies of field lines in the interplanetary medium. Although the pitch-angle scattering term is independent of energy, time-of-flight effects in the spiral geometry result in an energy dependence of the strahl width that is in the observed sense although weaker in magnitude.
Resumo:
Suprathermal electrons (E > 80 eV) carry heat flux away from the Sun. Processes controlling the heat flux are not well understood. To gain insight into these processes, we model heat flux as a linear dependence on two independent parameters: electron number flux and electron pitch angle anisotropy. Pitch angle anisotropy is further modeled as a linear dependence on two solar wind components: magnetic field strength and plasma density. These components show no correlation with number flux, reinforcing its independence from pitch angle anisotropy. Multiple linear regression applied to 2 years of Wind data shows good correspondence between modeled and observed heat flux and anisotropy. The results suggest that the interplay of solar wind parameters and electron number flux results in distinctive heat flux dropouts at heliospheric features like plasma sheets but that these parameters continuously modify heat flux. This is inconsistent with magnetic disconnection as the primary cause of heat flux dropouts. Analysis of fast and slow solar wind regimes separately shows that electron number flux and pitch angle anisotropy are equally correlated with heat flux in slow wind but that number flux is the dominant correlative in fast wind. Also, magnetic field strength correlates better with pitch angle anisotropy in slow wind than in fast wind. The energy dependence of the model fits suggests different scattering processes in fast and slow wind.
Progress on “Changing coastlines: data assimilation for morphodynamic prediction and predictability”
Resumo:
The task of assessing the likelihood and extent of coastal flooding is hampered by the lack of detailed information on near-shore bathymetry. This is required as an input for coastal inundation models, and in some cases the variability in the bathymetry can impact the prediction of those areas likely to be affected by flooding in a storm. The constant monitoring and data collection that would be required to characterise the near-shore bathymetry over large coastal areas is impractical, leaving the option of running morphodynamic models to predict the likely bathymetry at any given time. However, if the models are inaccurate the errors may be significant if incorrect bathymetry is used to predict possible flood risks. This project is assessing the use of data assimilation techniques to improve the predictions from a simple model, by rigorously incorporating observations of the bathymetry into the model, to bring the model closer to the actual situation. Currently we are concentrating on Morecambe Bay as a primary study site, as it has a highly dynamic inter-tidal zone, with changes in the course of channels in this zone impacting the likely locations of flooding from storms. We are working with SAR images, LiDAR, and swath bathymetry to give us the observations over a 2.5 year period running from May 2003 – November 2005. We have a LiDAR image of the entire inter-tidal zone for November 2005 to use as validation data. We have implemented a 3D-Var data assimilation scheme, to investigate the improvements in performance of the data assimilation compared to the previous scheme which was based on the optimal interpolation method. We are currently evaluating these different data assimilation techniques, using 22 SAR data observations. We will also include the LiDAR data and swath bathymetry to improve the observational coverage, and investigate the impact of different types of observation on the predictive ability of the model. We are also assessing the ability of the data assimilation scheme to recover the correct bathymetry after storm events, which can dramatically change the bathymetry in a short period of time.
Resumo:
The images taken by the Heliospheric Imagers (HIs), part of the SECCHI imaging package onboard the pair of STEREO spacecraft, provide information on the radial and latitudinal evolution of the plasma compressed inside corotating interaction regions (CIRs). A plasma density wave imaged by the HI instrument onboard STEREO-B was found to propagate towards STEREO-A, enabling a comparison between simultaneous remotesensing and in situ observations of its structure to be performed. In situ measurements made by STEREO-A show that the plasma density wave is associated with the passage of a CIR. The magnetic field compressed after the CIR stream interface (SI) is found to have a planar distribution. Minimum variance analysis of the magnetic field vectors shows that the SI is inclined at 54° to the orbital plane of the STEREO-A spacecraft. This inclination of the CIR SI is comparable to the inclination of the associated plasma density wave observed by HI. A small-scale magnetic cloud with a flux rope topology and radial extent of 0.08 AU is also embedded prior to the SI. The pitch-angle distribution of suprathermal electrons measured by the STEREO-A SWEA instrument shows that an open magnetic field topology in the cloud replaced the heliospheric current sheet locally. These observations confirm that HI observes CIRs in difference images when a small-scale transient is caught up in the compression region.
Resumo:
During the past 15 years, a number of initiatives have been undertaken at national level to develop ocean forecasting systems operating at regional and/or global scales. The co-ordination between these efforts has been organized internationally through the Global Ocean Data Assimilation Experiment (GODAE). The French MERCATOR project is one of the leading participants in GODAE. The MERCATOR systems routinely assimilate a variety of observations such as multi-satellite altimeter data, sea-surface temperature and in situ temperature and salinity profiles, focusing on high-resolution scales of the ocean dynamics. The assimilation strategy in MERCATOR is based on a hierarchy of methods of increasing sophistication including optimal interpolation, Kalman filtering and variational methods, which are progressively deployed through the Syst`eme d’Assimilation MERCATOR (SAM) series. SAM-1 is based on a reduced-order optimal interpolation which can be operated using ‘altimetry-only’ or ‘multi-data’ set-ups; it relies on the concept of separability, assuming that the correlations can be separated into a product of horizontal and vertical contributions. The second release, SAM-2, is being developed to include new features from the singular evolutive extended Kalman (SEEK) filter, such as three-dimensional, multivariate error modes and adaptivity schemes. The third one, SAM-3, considers variational methods such as the incremental four-dimensional variational algorithm. Most operational forecasting systems evaluated during GODAE are based on least-squares statistical estimation assuming Gaussian errors. In the framework of the EU MERSEA (Marine EnviRonment and Security for the European Area) project, research is being conducted to prepare the next-generation operational ocean monitoring and forecasting systems. The research effort will explore nonlinear assimilation formulations to overcome limitations of the current systems. This paper provides an overview of the developments conducted in MERSEA with the SEEK filter, the Ensemble Kalman filter and the sequential importance re-sampling filter.
Resumo:
We investigated patterns of bryophyte species richness and community structure, and their relation to roof variables, on thatched roofs of the Holnicote Estate, South Somerset. Thirty-two bryophyte species were recorded from 28 sampled roofs, including the globally rare and endangered thatch moss, Leptodontium gemmascens. Multiple regression analyses revealed that thatch age has a highly significant positive effect on the number of species present, accounting for nearly half the observed variation in species richness after removal of outliers. Aspect has a slight and marginally significant effect on species diversity (accounting for an additional 6% of variation), with north-facing samples having slightly more species. Age also has a significant impact on total bryophyte cover after removal of outlying observations. TWINSPAN analysis of bryophyte cover data suggests the existence of at least five discrete communities. Simple Discriminant Analyses indicate that these communities occupy different ecological subspaces as defined by the measured roof variables, with pitch, aspect and thatch age emerging as especially significant attributes. Contingency Analysis indicates that some communities are disfavoured by water reed as compared to wheat straw. The findings are significant for understanding the structure of bryophyte communities, for evaluating the effect of bryophyte cover on thatch performance, and for conservation of thatch communities, especially those harbouring rare species.
Resumo:
A series of water-soluble synthetic dipeptides (1-3) with an N-terminally located beta-alanine residue, beta-alanyl-L-valine (1), beta-alanyl-L-isoleucine (2), and beta-alanyl-L-phenylalanine (3, form hydrogen-bonded supramolecular double helices with a pitch length of 1 nm, whereas the C-terminally positioned beta-alanine containing dipeptide (4), L-phenylalanyl-beta-alanine, does not form a supramolecular double helical structure. beta-Ala-Xaa (Xaa = Val/Ile/Phe) can be regarded as a new motif for the formation of supramolecular double helical structures in the solid state.
Resumo:
The analysis of organic residues from pottery sherds using Gas-Chromatography with mass-spectroscopy (GC-MS) has revealed information about the variety of foods eaten and domestic routine at Silchester between the second and fourth–sixth centuries A.D. Two results are discussed in detail: those of a second-century Gauloise-type amphora and a fourth-century SE Dorset black-burnished ware (BB1) cooking pot, which reveal the use of pine pitch on the inner surface of the amphora and the use of animal fats (ruminant adipose fats) and leafy vegetables in cooking at the Roman town of Silchester, Hants.
Resumo:
Listeners were asked to identify modified recordings of the words "sir" and "stir," which were spoken by an adult male British-English speaker. Steps along a continuum between the words were obtained by a pointwise interpolation of their temporal-envelopes. These test words were embedded in a longer "context" utterance, and played with different amounts of reverberation. Increasing only the test-word's reverberation shifts the listener's category boundary so that more "sir"-identifications are made. This effect reduces when the context's reverberation is also increased, indicating perceptual compensation that is informed by the context. Experiment I finds that compensation is more prominent in rapid speech, that it varies between rooms, that it is more prominent when the test-word's reverberation is high, and that it increases with the context's reverberation. Further experiments show that compensation persists when the room is switched between the context and the test word, when presentation is monaural, and when the context is reversed. However, compensation reduces when the context's reverberation pattern is reversed, as well as when noise-versions of the context are used. "Tails" that reverberation introduces at the ends of sounds and at spectral transitions may inform the compensation mechanism about the amount of reflected sound in the signal. (c) 2005 Acoustical Society of America.
Resumo:
The aim of the current study was to investigate expressive affect in children with Williams syndrome ( WS) in comparison to typically developing children in an experimental task and in spontaneous speech. Fourteen children with WS, 14 typically developing children matched to the WS group for receptive language ( LA) and 15 typically developing children matched to the WS groups for chronological age ( CA) were recruited. Affect was investigated using an experimental Output Affect task from the Profiling Elements of Prosodic Systems-Child version ( PEPS-C) battery, and by measuring pitch range and vowel durations from a spontaneous speech task. The children were also rated for level of emotional involvement by phonetically naive listeners. The WS group performed similarly to the LA and CA groups on the Output Affect task. With regard to vowel durations, the WS group was no different from the LA group; however both the WS and the LA groups were found to use significantly longer vowels than the CA group. The WS group differed significantly from both control groups on their range of pitch range and was perceived as being significantly more emotionally involved than the two control groups.
Resumo:
While the beneficial effect of levodopa on traditional motor control tasks have been well documented over the decades. its effect on speech motor control has rarely been objectively examined and the existing literature remains inconclusive. This paper aims to examine the effect of levodopa on speech in patients with Parkinson's disease. It was hypothesized that levodopa would improve preparatory motor set related activity and alleviate hypophonia. Patients fasted and abstained from levodopa overnight. Motor examination and speech testing was performed the following day, pre-levodopa during their "off' state, then at hourly intervals post-medication to obtain the best "on" state. All speech stimuli showed a consistent tendency for increased loudness and faster rate during the "on" state, but this was accompanied by a greater extent of intensity decay. Pitch and articulation remained unchanged. Levodopa effectively upscaled the overall gain setting of vocal amplitude and tempo, similar to its well-known effect on limb movement. However, unlike limb movement, this effect on the final acoustic product of speech may or may not be advantageous, depending on the existing speech profile of individual patients. (C) 2007 Movement Disorder Society.
Resumo:
Interference with time estimation from concurrent nontemporal processing has been shown to depend on the short-term memory requirements of the concurrent task (Fortin Breton, 1995; Fortin, Rousseau, Bourque, & Kirouac, 1993). In particular, it has been claimed that active processing of information in short-term memory produces interference, whereas simply maintaining information does not. Here, four experiments are reported in which subjects were trained to produce a 2,500-msec interval and then perform concurrent memory tasks. Interference with timing was demonstrated for concurrent memory tasks involving only maintenance. In one experiment, increasing set size in a pitch memory task systematically lengthened temporal production. Two further experiments suggested that this was due to a specific interaction between the short-term memory requirements of the pitch task and those of temporal production. In the final experiment, subjects performed temporal production while concurrently remembering the durations of a set of tones. Interference with interval production was comparable to that produced by the pitch memory task. Results are discussed in terms of a pacemaker-counter model of temporal processing, in which the counter component is supported by short-term memory.
Resumo:
In this paper we present error analysis for a Monte Carlo algorithm for evaluating bilinear forms of matrix powers. An almost Optimal Monte Carlo (MAO) algorithm for solving this problem is formulated. Results for the structure of the probability error are presented and the construction of robust and interpolation Monte Carlo algorithms are discussed. Results are presented comparing the performance of the Monte Carlo algorithm with that of a corresponding deterministic algorithm. The two algorithms are tested on a well balanced matrix and then the effects of perturbing this matrix, by small and large amounts, is studied.
Resumo:
In this paper we analyse applicability and robustness of Markov chain Monte Carlo algorithms for eigenvalue problems. We restrict our consideration to real symmetric matrices. Almost Optimal Monte Carlo (MAO) algorithms for solving eigenvalue problems are formulated. Results for the structure of both - systematic and probability error are presented. It is shown that the values of both errors can be controlled independently by different algorithmic parameters. The results present how the systematic error depends on the matrix spectrum. The analysis of the probability error is presented. It shows that the close (in some sense) the matrix under consideration is to the stochastic matrix the smaller is this error. Sufficient conditions for constructing robust and interpolation Monte Carlo algorithms are obtained. For stochastic matrices an interpolation Monte Carlo algorithm is constructed. A number of numerical tests for large symmetric dense matrices are performed in order to study experimentally the dependence of the systematic error from the structure of matrix spectrum. We also study how the probability error depends on the balancing of the matrix. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
The high variability of the intensity of suprathermal electron flux in the solar wind is usually ascribed to the high variability of sources on the Sun. Here we demonstrate that a substantial amount of the variability arises from peaks in stream interaction regions, where fast wind runs into slow wind and creates a pressure ridge at the interface. Superposed epoch analysis centered on stream interfaces in 26 interaction regions previously identified in Wind data reveal a twofold increase in 250 eV flux (integrated over pitch angle). Whether the peaks result from the compression there or are solar signatures of the coronal hole boundary, to which interfaces may map, is an open question. Suggestive of the latter, some cases show a displacement between the electron and magnetic field peaks at the interface. Since solar information is transmitted to 1 AU much more quickly by suprathermal electrons compared to convected plasma signatures, the displacement may imply a shift in the coronal hole boundary through transport of open magnetic flux via interchange reconnection. If so, however, the fact that displacements occur in both directions and that the electron and field peaks in the superposed epoch analysis are nearly coincident indicate that any systematic transport expected from differential solar rotation is overwhelmed by a random pattern, possibly owing to transport across a ragged coronal hole boundary.