980 resultados para photoluminescence (PL) spectra
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this work, we report on the synthesis of MgMoO4 crystals by oxide mixed method. The powder was calcined at 1100 degrees C for 4h and analyzed by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Field emission gun scanning electron microscopy (FEG-SEM), Ultraviolet-visible (UV-vis) absorption spectroscopy and Photoluminescence (PL) measurement. XRD analyses revealed that the MgMoO4 powders crystallize in a monoclinic structure and are free secondary phases. UV-vis technique was employed to determine the optical band gap of this material. MgMoO4 crystals exhibit an intense PL emission at room temperature with maximum peak at 579 nm (yellow region) when excited by 350 nm wavelength at room temperature.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The paper presents a process of cellulose thermal degradation with bio-hydrogen generation and zinc nanostructures synthesis. Production of zinc nanowires and zinc nanoflowers was performed by a novel processes based on cellulose pyrolysis, volatiles reforming and direct reduction of ZnO. The bio-hydrogen generated in situ promoted the ZnO reduction with Zn nanostructures formation by vapor–solid (VS) route. The cellulose and cellulose/ZnO samples were characterized by thermal analyses (TG/DTG/DTA) and the gases evolved were analyzed by FTIR spectroscopy (TG/FTIR). The hydrogen was detected by TPR (Temperature Programmed Reaction) tests. The results showed that in the presence of ZnO the cellulose thermal degradation produced larger amounts of H2 when compared to pure cellulose. The process was also carried out in a tubular furnace with N2 atmosphere, at temperatures up to 900 °C, and different heating rates. The nanostructures growth was catalyst-free, without pressure reduction, at temperatures lower than those required in the carbothermal reduction of ZnO with fossil carbon. The nanostructures were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS) and transmission electron microscopy (TEM). The optical properties were investigated by photoluminescence (PL). One mechanism was presented in an attempt to explain the synthesis of zinc nanostructures that are crystalline, were obtained without significant re-oxidation and whose morphologies are dependent on the heating rates of the process. This route presents a potential use as an industrial process taking into account the simple operational conditions, the low costs of cellulose and the importance of bio-hydrogen and nanostructured zinc.
Resumo:
Pós-graduação em Química - IQ
Resumo:
5 We employ the circular-polarization-resolved magnetophotoluminescence technique to probe the spin character of electron and hole states in a GaAs/AlGaAs strongly coupled double-quantum-well system. The photoluminescence (PL) intensities of the lines associated with symmetric and antisymmetric electron states present clear out-of-phase oscillations between integer values of the filling factor. and are caused by magnetic-field-induced changes in the population of occupied Landau levels near to the Fermi level of the system. Moreover, the degree of circular polarization of these emissions also exhibits the oscillatory behavior with increasing magnetic field. Both quantum oscillations observed in the PL intensities and in the degree of polarizations may be understood in terms of a simple single-particle approach model. The k . p method was used to calculate the photoluminescence peak energies and the degree of circular polarizations in the double-quantum-well structure as a function of the magnetic field. These calculations prove that the character of valence band states plays an important role in the determination of the degree of circular polarization and, thus, resulting in a magnetic-field-induced change of the polarization sign.
Resumo:
Optical properties of intentionally disordered multiple quantum well (QW) system embedded in a wide AlGaAs parabolic well were investigated by photoluminescence (PL) measurements as functions of the laser excitation power and the temperature. The characterization of the carriers localized in the individual wells was allowed due to the artificial disorder that caused spectral separation of the photoluminescence lines emitted by different wells. We observed that the photoluminescence peak intensity from each quantum well shifted to high energy as the excitation power was increased. This blue-shift is associated with the filling of localized states in the valence band tail. We also found that the dependence of the peak intensity on the temperature is very sensitive to the excitation power. The temperature dependence of the photoluminescence peak energy from each QW was well fitted using a model that takes into account the thermal redistribution of the localized carriers. Our results demonstrate that the band tails in the studied structures are caused by alloy potential fluctuations and the band tail states dominate the emission from the peripheral wells. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4730769]
Resumo:
This work reports on the results of magnetophotoluminescence (MPL) measurements carried out in a sample containing two Al0.35Ga0.65As/GaAs, coupled double quantum wells (CDQWs), with inter-well barriers of different thicknesses, which have the heterointerfaces characterized by a distribution of bimodal roughness. The MPL measurements were performed at 4 K, with magnetic fields applied parallel to the growth direction, and varying from 0 to 12 T. The diamagnetic shift of the photoluminescence (PL) peaks is more sensitive to changes in the confinement potential, due to monolayer variations in the mini-well thickness, rather than to the exciton localization at the local potential fluctuations. As the magnetic field increases, the relative intensities of the two peaks in each PL band inverts, what is attributed to the reduction in the radiative lifetime of the delocalized excitons, which results in the radiative recombination, before the excitonic migration between the higher and lower energy regions in each CDQW occurs. The dependence of the full width at half maximum (FWHM) on magnetic field shows different behaviors for each PL peak, which are attributed to the different levels and correlation lengths of the potential fluctuations present in the regions associated with each recombination channel. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The effect of terbium (Tb) doping on the photoluminescence (PL) of crystalline aluminum nitride (c-AlN) and amorphous hydrogenated silicon carbide (a-SiC:H) thin films has been investigated for different Tb atomic concentrations. The samples were prepared by DC and RF magnetron reactive sputtering techniques covering the concentration range of Tb from 0.5 to 11 at.%. The Tb-related light emission versus the Tb concentration is reported for annealing temperatures of 450 °C, 750 °C and 1000 °C. In the low concentration region the intensity exhibits a linear increase and its slope is enhanced with the annealing temperature giving an activation energy of 0.106 eV in an Arrhenius plot. In the high concentration region an exponential decay is recorded which is almost independent on the host material, its structure and the annealing process.
Resumo:
Excitonic dynamics in a hybrid dot-well system composed of InAs quantum dots (QDs) and an InGaAs quantum well (QW) is studied by means of femtosecond pump-probe reflection and continuous wave (cw) photoluminescence (PL) spectroscopy. The system is engineered to bring the QW ground exciton state into resonance with the third QD excited state. The resonant tunneling rate is varied by changing the effective barrier thickness between the QD and QW layers. This strongly affects the exciton dynamics in these hybrid structures as compared to isolated QW or QD systems. Optically measured decay times of the coupled system demonstrate dramatically different response to temperature change depending on the strength of the resonant tunneling or coupling strength. This reflects a competition between purely quantum mechanical and thermodynamical processes.
Resumo:
The study of electrochemiluminescence (ECL) involves photophysical and electrochemical aspects. Excited states are populated by an electrical stimulus. The most important applications are in the diagnostic field where a number of different biologically-relevant molecules (e.g. proteins and nucleic acids) can be recognized and quantified with a sensitivity and specificity previously not reachable. As a matter of fact the electrochemistry, differently to the classic techniques as fluorescence and chemiluminescence, allows to control the excited state generation spatially and temporally. The two research visits into A. J. Bard electrochemistry laboratories were priceless. Dr. Bard has been one of ECL pioneers, the first to introduce the technique and the one who discovered in 1972 the surprising emission of Ru(bpy)3 2+. I consider necessary to thank by now my supervisors Massimo and Francesco for their help and for giving me the great opportunity to know this unique science man that made me feel enthusiastic. I will never be grateful enough… Considering that the experimental techniques of ECL did not changed significantly in these last years the most convenient research direction has been the developing of materials with new or improved properties. In Chapter I the basics concepts and mechanisms of ECL are introduced so that the successive experiments can be easily understood. In the final paragraph the scopes of the thesis are briefly described. In Chapter II by starting from ECL experimental apparatus of Dr. Bard’s laboratories the design, assembly and preliminary tests of the new Bologna instrument are carefully described. The instrument assembly required to work hard but resulted in the introduction of the new technique in our labs by allowing the continuation of the ECL studies began in Texas. In Chapter III are described the results of electrochemical and ECL studies performed on new synthesized Ru(II) complexes containing tetrazolate based ligands. ECL emission has been investigated in solution and in solid thin films. The effect of the chemical protonation of the tetrazolate ring on ECL emission has been also investigated evidencing the possibility of a catalytic effect (generation of molecular hydrogen) of one of the complexes in organic media. Finally, after a series of preliminary studies on ECL emission in acqueous buffers, the direct interaction with calf thymus DNA of some complexes has been tested by ECL and photoluminescence (PL) titration. In Chapter IV different Ir(III) complexes have been characterized electrochemically and photophysically (ECL and PL). Some complexes were already well-known in literature for their high quantum efficiency whereas the remaining were new synthesized compounds containing tetrazolate based ligands analogous to those investigated in Chapt. III. During the tests on a halogenated complex was unexpectedly evidenced the possibility to follow the kinetics of an electro-induced chemical reaction by using ECL signal. In the last chapter (V) the possibility to use mono-use silicon chips electrodes as ECL analitycal devices is under investigation. The chapter begins by describing the chip structure and materials then a signal reproducibility study and geometry optimization is carried on by using two different complexes. In the following paragraphs is reported in detail the synthesis of an ECL label based on Ru(bpy)3 2+ and the chip functionalization by using a lipoic acid SAM and the same label. After some preliminary characterizations (mass spectroscopy TOF) has been demonstrated that by mean of a simple and fast ECL measurement it’s possible to confirm the presence of the coupling product SAM-label into the chip with a very high sensitivity. No signal was detected from the same system by using photoluminescence.
Resumo:
Der erste Teil der vorliegenden Arbeit beschäftigt sich mit der Modifikation der spontanen Emission im Strong Coupling Regime. Hierzu wurden geeignete optische, organische 'Halbleiter'-Mikroresonatoren präpariert.Zunächst wurde das verwendete optisch aktive Material, das J-Aggregat PIC, spektroskopisch charakterisiert. In Transmissionsmessungen an den Mikroresonatoren wurden Vakuum-Rabi-Splitting-Energien zwischen 26 und 52 meV bestimmt. Es wurde die Abhängigkeit der Vakuum-Rabi-Splitting-Energie von der räumlichen Position der optisch aktiven Schicht innerhalb des Mikroresonators untersucht. Durch eine Simulation konnte nachgewiesen werden, daß der Grund für die Asymmetrie des Rabi-Splittings bei einer Verstimmung von 0 meV durch die Asymmetrie des Absorptionsspektrums des optisch aktiven Materials gegeben ist. Weiterhin wurde die Photolumineszenz der Mikroresonatoren untersucht. Es konnte in temperaturabhängigen Messungen gezeigt werden, daß die hochenergetische Bande gegenüber der niederenergetischen Bande bei steigender Temperatur entsprechend einer Boltzmann-Verteilung stärker besetzt wird.Im zweiten Teil der Arbeit wurden die optischen Eigenschaften von dünnen Filmen N´N´Bis (2,6-xylyl)perylene-3,4:9,10-bis(dicarboximide) (DPP-PTCDI) abhängig von der Schichtdicke untersucht. Die Photolumineszenzspektren der dünnen Filme wurden mit zunehmender Dicke durch eine neue Bande bei kleineren Energien bestimmt. Diese Bande kann mit der Emission aus Fallenzuständen erklärt werden. Durch Photolumineszenz-Anregungsspektroskopie konnte gezeigt werden, daß die Fallenzustände auch im Grundzustand existieren. Exzimere können daher als Ursache ausgeschlossen werden.
Resumo:
We present steady-state absorption and emission spectroscopy and femtosecond broadband photoluminescence up-conversion spectroscopy studies of the electronic relaxation of Os(dmbp)3 (Os1) and Os(bpy)2(dpp) (Os2) in ethanol, where dmbp is 4,4′-dimethyl-2,2′-biypridine, bpy is 2,2′-biypridine, and dpp is 2,3-dipyridyl pyrazine. In both cases, the steady-state phosphorescence is due to the lowest 3MLCT state, whose quantum yield we estimate to be ≤5.0 × 10–3. For Os1, the steady-state phosphorescence lifetime is 25 ns. In both complexes, the photoluminescence excitation spectra map the absorption spectrum, pointing to an excitation wavelength-independent quantum yield. The ultrafast studies revealed a short-lived (≤100 fs) fluorescence, which stems from the lowest singlet metal-to-ligand-charge-transfer (1MLCT) state and decays by intersystem crossing to the manifold of 3MLCT states. In addition, Os1 exhibits a 50 ps lived emission from an intermediate triplet state at an energy 2000 cm–1 above that of the long-lived (25 ns) phosphorescence. In Os2, the 1MLCT–3MLCT intersystem crossing is faster than that in Os1, and no emission from triplet states is observed other than the lowest one. These observations are attributed to a higher density of states or a smaller energy spacing between them compared with Os1. They highlight the importance of the energetics on the rate of intersystem crossing.