1000 resultados para patinga hybrid
Resumo:
Li, Xing; Habbal, S.R., (2005) 'Hybrid simulation of ion cyclotron resonance in the solar wind: evolution of velocity distribution functions', Journal of Geophysical Research 110(A10) pp.A10109 RAE2008
Resumo:
This paper presents a techno-economic assessment for a unique Isolated Hybrid Power System (IHPS) design for remote areas isolated from the grid which also has the capability of being operated as a smart μ-grid. The share of renewable energy sources in resource poor developing countries is low. In these countries an increase in the share of alternative energy (wind, water and sun) delivered with inexpensive operationally robust generation and delivery systems is seen to the way forward. In our design also incorporates a novel storage system to increase the effectiveness of the Isolated IHPSs previously reported in the literature. The configuration reported is a system consisting of, the wind and sun powered generation complemented with batteries, fuel cell unit and a diesel generator. The modelling design and simulations were based on Simulations conducted using MATLAB/SIMULINK, and HOMER Energy Planning and Design software tools. The design and simulation of a new storage approach incorporating Hydrogen Peroxide (H2O2) fuel cell (increasing the efficiency of the fuel cell from 35% to 65%) and a single board computer (Raspberry Pi) used for the energy management and control the system are the novel features of our design. The novel control strategy implemented also includes a synchronization capability that facilitates IHPS to IHPS or IHPS to Main-Grid connection. In the paper after briefly but comprehensively detailing the design and simulations we will present the results on which we conclude that smart independent systems that can utilize indigenous renewable energy with a capability of being able to synchronize with the grid or each other are the most optimal way of electrifying resource poor developing countries in a sustainable way with minimum impact on the environment and also achieve reductions in Green House Gases.
Resumo:
We give a hybrid algorithm for parsing epsilon grammars based on Tomita's non-ϵ-grammar parsing algorithm ([Tom86]) and Nozohoor-Farshi's ϵ-grammar recognition algorithm ([NF91]). The hybrid parser handles the same set of grammars handled by Nozohoor-Farshi's recognizer. The algorithm's details and an example of its use are given. We also discuss the deployment of the hybrid algorithm within a GB parser, and the reason an ϵ grammar parser is needed in our GB parser.
Resumo:
End-to-End differentiation between wireless and congestion loss can equip TCP control so it operates effectively in a hybrid wired/wireless environment. Our approach integrates two techniques: packet loss pairs (PLP) and Hidden Markov Modeling (HMM). A packet loss pair is formed by two back-to-back packets, where one packet is lost while the second packet is successfully received. The purpose is for the second packet to carry the state of the network path, namely the round trip time (RTT), at the time the other packet is lost. Under realistic conditions, PLP provides strong differentiation between congestion and wireless type of loss based on distinguishable RTT distributions. An HMM is then trained so observed RTTs can be mapped to model states that represent either congestion loss or wireless loss. Extensive simulations confirm the accuracy of our HMM-based technique in classifying the cause of a packet loss. We also show the superiority of our technique over the Vegas predictor, which was recently found to perform best and which exemplifies other existing loss labeling techniques.
Resumo:
Science Foundation Ireland (CSET - Centre for Science, Engineering and Technology, grant 07/CE/I1147); Scientific Foundation Ireland (ITOBO (398-CRP))
Resumo:
This thesis covers both the packaging of silicon photonic devices with fiber inputs and outputs as well as the integration of laser light sources with these same devices. The principal challenge in both of these pursuits is coupling light into the submicrometer waveguides that are the hallmark of silicon-on-insulator (SOI) systems. Previous work on grating couplers is leveraged to design new approaches to bridge the gap between the highly-integrated domain of silicon, the Interconnected world of fiber and the active region of III-V materials. First, a novel process for the planar packaging of grating couplers with fibers is explored in detail. This technology allows the creation of easy-to-use test platforms for laser integration and also stands on its own merits as an enabling technology for next-generation silicon photonics systems. The alignment tolerances of this process are shown to be well-suited to a passive alignment process and for wafer-scale assembly. Furthermore, this technology has already been used to package demonstrators for research partners and is included in the offerings of the ePIXfab silicon photonics foundry and as a design kit for PhoeniX Software’s MaskEngineer product. After this, a process for hybridly integrating a discrete edge-emitting laser with a silicon photonic circuit using near-vertical coupling is developed and characterized. The details of the various steps of the design process are given, including mechanical, thermal, optical and electrical steps. The interrelation of these design domains is also discussed. The construction process for a demonstrator is outlined, and measurements are presented of a series of single-wavelength Fabry-Pérot lasers along with a two-section laser tunable in the telecommunications C-band. The suitability and potential of this technology for mass manufacture is demonstrated, with further opportunities for improvement detailed and discussed in the conclusion.
Resumo:
The objective of this thesis is the exploration and characterization of novel Au nanorod-semiconductor nanowire hybrid nanostructures. I provide a comprehensive bottom-up approach in which, starting from the synthesis and theoretical investigation of the optical properties of Au nanorods, I design, nanofabricate and characterize Au nanorods-semiconductor nanowire hybrid nanodevices with novel optoelectronic capabilities compared to the non-hybrid counterpart. In this regards, I first discuss the seed-mediated protocols to synthesize Au nanorods with different sizes and the influence of nanorod geometries and non-homogeneous surrounding medium on the optical properties investigated by theoretical simulation. Novel methodologies for assembling Au nanorods on (i) a Si/SiO2 substrate with highly-ordered architecture and (ii) on semiconductor nanowires with spatial precision are developed and optimized. By exploiting these approaches, I demonstrate that Raman active modes of an individual ZnO nanowire can be detected in non-resonant conditions by exploring the longitudinal plasmonic resonance mediation of chemical-synthesized Au nanorods deposited on the nanowire surface otherwise not observable on bare ZnO nanowire. Finally, nanofabrication and detailed electrical characterization of ZnO nanowire field-effect transistor (FET) and optoelectronic properties of Au nanorods - ZnO nanowire FET tunable near-infrared photodetector are investigated. In particular we demonstrated orders of magnitude enhancement in the photocurrent intensity in the explored range of wavelengths and 40 times faster time response compared to the bare ZnO FET detector. The improved performance, attributed to the plasmonicmediated hot-electron generation and injection mechanism underlying the photoresponse is investigated both experimentally and theoretically. The miniaturized, tunable and integrated capabilities offered by metal nanorodssemicondictor nanowire device architectures presented in this thesis work could have an important impact in many application fields such as opto-electronic sensors, photodetectors and photovoltaic devices and open new avenues for designing of novel nanoscale optoelectronic devices.
Resumo:
We report the first piezoelectric potential gated hybrid field-effect transistors based on nanotubes and nanowires. The device consists of single-walled carbon nanotubes (SWNTs) on the bottom and crossed ZnO piezoelectric fine wire (PFW) on the top with an insulating layer between. Here, SWNTs serve as a carrier transport channel, and a single-crystal ZnO PFW acts as the power-free, contact-free gate or even an energy-harvesting component later on. The piezopotential created by an external force in the ZnO PFW is demonstrated to control the charge transport in the SWNT channel located underneath. The magnitude of the piezopotential in the PFW at a tensile strain of 0.05% is measured to be 0.4-0.6 V. The device is a unique coupling between the piezoelectric property of the ZnO PFW and the semiconductor performance of the SWNT with a full utilization of its mobility. The newly demonstrated device has potential applications as a strain sensor, force/pressure monitor, security trigger, and analog-signal touch screen.
Resumo:
The radiation loss in the escaping light cone with a two-dimensional (2D) photonic crystal slab microcavity can be suppressed by means of cladding the low-Q slab microcavity by three-dimensional woodpile photonic crystals with the complete bandgap when the resonance frequency is located inside the complete bandgap. It is confirmed that the hybrid microcavity based on a low-Q, single-defect photonic crystal slab microcavity shows improvement of the Q factor without affecting the mode volume and modal frequency. Whereas 2D slab microcavities exhibit Q saturation with an increase in the number of layers, for the analyzed hybrid microcavities with a small gap between the slab and woodpiles, the Q factor does not saturate.
Resumo:
The Bateson-Dobzhansky-Muller model posits that hybrid incompatibilities result from genetic changes that accumulate during population divergence. Indeed, much effort in recent years has been devoted to identifying genes associated with hybrid incompatibilities, often with limited success, suggesting that hybrid sterility and inviability are frequently caused by complex interactions between multiple loci and not by single or a small number of gene pairs. Our previous study showed that the nature of epistasis between sterility-conferring QTL in the Drosophila persimilis-D. pseudoobscura bogotana species pair is highly specific. Here, we further dissect one of the three QTL underlying hybrid male sterility between these species and provide evidence for multiple factors within this QTL. This result indicates that the number of loci thought to contribute to hybrid dysfunction may have been underestimated, and we discuss how linkage and complex epistasis may be characteristic of the genetics of hybrid incompatibilities. We further pinpoint the location of one locus that confers hybrid male sterility when homozygous, dubbed "mule-like", to roughly 250 kilobases.
Resumo:
BACKGROUND: The clinical syndrome of heart failure (HF) is characterized by an impaired cardiac beta-adrenergic receptor (betaAR) system, which is critical in the regulation of myocardial function. Expression of the betaAR kinase (betaARK1), which phosphorylates and uncouples betaARs, is elevated in human HF; this likely contributes to the abnormal betaAR responsiveness that occurs with beta-agonist administration. We previously showed that transgenic mice with increased myocardial betaARK1 expression had impaired cardiac function in vivo and that inhibiting endogenous betaARK1 activity in the heart led to enhanced myocardial function. METHODS AND RESULTS: We created hybrid transgenic mice with cardiac-specific concomitant overexpression of both betaARK1 and an inhibitor of betaARK1 activity to study the feasibility and functional consequences of the inhibition of elevated betaARK1 activity similar to that present in human HF. Transgenic mice with myocardial overexpression of betaARK1 (3 to 5-fold) have a blunted in vivo contractile response to isoproterenol when compared with non-transgenic control mice. In the hybrid transgenic mice, although myocardial betaARK1 levels remained elevated due to transgene expression, in vitro betaARK1 activity returned to control levels and the percentage of betaARs in the high-affinity state increased to normal wild-type levels. Furthermore, the in vivo left ventricular contractile response to betaAR stimulation was restored to normal in the hybrid double-transgenic mice. CONCLUSIONS: Novel hybrid transgenic mice can be created with concomitant cardiac-specific overexpression of 2 independent transgenes with opposing actions. Elevated myocardial betaARK1 in transgenic mouse hearts (to levels seen in human HF) can be inhibited in vivo by a peptide that can prevent agonist-stimulated desensitization of cardiac betaARs. This may represent a novel strategy to improve myocardial function in the setting of compromised heart function.
Resumo:
G protein-coupled receptor kinases (GRKs) phosphorylate activated G protein-coupled receptors, including alpha(1B)-adrenergic receptors (ARs), resulting in desensitization. In vivo analysis of GRK substrate selectivity has been limited. Therefore, we generated hybrid transgenic mice with myocardium-targeted overexpression of 1 of 3 GRKs expressed in the heart (GRK2 [commonly known as the beta-AR kinase 1], GRK3, or GRK5) with concomitant cardiac expression of a constitutively activated mutant (CAM) or wild-type alpha(1B)AR. Transgenic mice with cardiac CAMalpha(1B)AR overexpression had enhanced myocardial alpha(1)AR signaling and elevated heart-to-body weight ratios with ventricular atrial natriuretic factor expression denoting myocardial hypertrophy. Transgenic mouse hearts overexpressing only GRK2, GRK3, or GRK5 had no hypertrophy. In hybrid transgenic mice, enhanced in vivo signaling through CAMalpha(1B)ARs, as measured by myocardial diacylglycerol content, was attenuated by concomitant overexpression of GRK3 but not GRK2 or GRK5. CAMalpha(1B)AR-induced hypertrophy and ventricular atrial natriuretic factor expression were significantly attenuated with either concurrent GRK3 or GRK5 overexpression. Similar GRK selectivity was seen in hybrid transgenic mice with wild-type alpha(1B)AR overexpression concurrently with a GRK. GRK2 overexpression was without effect on any in vivo CAM or wild-type alpha(1B)AR cardiac phenotype, which is in contrast to previously reported in vitro findings. Furthermore, endogenous myocardial alpha(1)AR mitogen-activated protein kinase signaling in single-GRK transgenic mice also exhibited selectivity, as GRK3 and GRK5 desensitized in vivo alpha(1)AR mitogen-activated protein kinase responses that were unaffected by GRK2 overexpression. Thus, these results demonstrate that GRKs differentially interact with alpha(1B)ARs in vivo such that GRK3 desensitizes all alpha(1B)AR signaling, whereas GRK5 has partial effects and, most interestingly, GRK2 has no effect on in vivo alpha(1B)AR signaling in the heart.
Resumo:
Gemstone Team FISH
Resumo:
Single-molecule sequencing instruments can generate multikilobase sequences with the potential to greatly improve genome and transcriptome assembly. However, the error rates of single-molecule reads are high, which has limited their use thus far to resequencing bacteria. To address this limitation, we introduce a correction algorithm and assembly strategy that uses short, high-fidelity sequences to correct the error in single-molecule sequences. We demonstrate the utility of this approach on reads generated by a PacBio RS instrument from phage, prokaryotic and eukaryotic whole genomes, including the previously unsequenced genome of the parrot Melopsittacus undulatus, as well as for RNA-Seq reads of the corn (Zea mays) transcriptome. Our long-read correction achieves >99.9% base-call accuracy, leading to substantially better assemblies than current sequencing strategies: in the best example, the median contig size was quintupled relative to high-coverage, second-generation assemblies. Greater gains are predicted if read lengths continue to increase, including the prospect of single-contig bacterial chromosome assembly.