910 resultados para passive avoidance
Resumo:
This paper presents a multiple robots formation manoeuvring and its collision avoidance strategy. The direction priority sequential selection algorithm is employed to achieve the raw path, and a new algorithm is then proposed to calculate the turning compliant waypoints supporting the multi-robot formation manoeuvre. The collision avoidance strategy based on the formation control is presented to translate the collision avoidance problem into the stability problem of the formation. The extension-decomposition-aggregation scheme is next applied to solve the formation control problem and subsequently achieve the collision avoidance during the formation manoeuvre. Simulation study finally shows that the collision avoidance problem can be conveniently solved if the stability of the constructed formation including unidentified objects can be satisfied.
Resumo:
Increasing energy efficiency in the residential sector, while maintaining adequate home ventilation for health and well-being, is proving to be a challenge. This study assesses the efficacy of passive ventilation strategies designed to comply with building regulations and imposed after housing energy-efficiency retrofits. In particular, it focuses on the provision of ventilation using background through-wall vents, which remains a common strategy in a number of European countries including Ireland and the UK, where vent sizes, related to floor area, are stipulated in building regulations. A collective of social housing, with background through-wall vents installed post thermal retrofit, is taken as a case study. These homes are modelled to interrogate the impact of the passive ventilation strategy on house air exchange rate and thermal heating energy loads. The reaction of occupants to through-wall vent installation is decidedly negative and many block vents to limit thermal discomfort and heat loss. Simulation studies show significant external air ingress through vents. A wide range of effective air change rates are observed when vents are sized without reference to building airtightness, and significant energy penalties result for the leakier homes. This study evaluates the provision of passive through-wall ventilation as part of a retrofit programme and shows it to have a number of drawbacks that may impact on the health of the building and its occupants and ultimately be at odds with the aims of achieving energy efficiency in the residential sector.
Resumo:
We report on the first demonstration of passive all-optical plasma lensing using a two-stage setup. An intense femtosecond laser accelerates electrons in a laser wakefield accelerator (LWFA) to 100 MeVover millimeter length scales. By adding a second gas target behind the initial LWFAstage we introduce a robust and independently tunable plasma lens. We observe a density dependent reduction of the LWFA electron beam divergence from an initial value of 2.3 mrad, down to 1.4 mrad (rms), when the plasma lens is in operation. Such a plasma lens provides a simple and compact approach for divergence reduction well matched to the mm-scale length of the LWFA accelerator. The focusing forces are provided solely by the plasma and driven by the bunch itself only, making this a highly useful and conceptually new approach to electron beam focusing. Possible applications of this lens are not limited to laser plasma accelerators. Since no active driver is needed the passive plasma lens is also suited for high repetition rate focusing of electron bunches. Its understanding is also required for modeling the evolution of the driving particle bunch in particle driven wake field acceleration.
Resumo:
Insights into the potential for pain may be obtained from examination of behavioural responses to noxious stimuli. In particular, prolonged responses coupled with long-term motivational change and avoidance learning cannot be explained by nociceptive reflex but are consistent with the idea of pain. Here, we placed shore crabs alternately in two halves of a test area divided by an opaque partition. Each area had a dark shelter and in one repeated small electric shocks were delivered in an experimental but not in a control group. Crabs showed no specific avoidance of the shock shelter either during these trials or in a subsequent test in which both were offered simultaneously; however they often emerged from the shock shelter during a trial and thus avoided further shock. More crabs emerged in later trials and took less time to emerge than in early trials. Thus, despite the lack of discrimination learning between the two shelters they used other tactics to markedly reduce the amount of shock received. We note that a previous experiment using simultaneous presentation of two shelters demonstrated rapid discrimination and avoidance learning but the paradigm of sequential presentation appears to prevent this. Nevertheless, the data show clearly that the shock is aversive and tactics, other than discrimination learning, are used to avoid it. Thus, the behaviour is only partially consistent with the idea of pain.
Resumo:
Il lavoro di tesi svolto riguarda lo sviluppo e la sperimentazione di un primo prototipo di sistema per l’obstacle detection e collision avoidance, capace di identificare un ostacolo e inibire i comandi del pilota in modo da evitare collisioni.
Resumo:
This paper presents a study that was undertaken to examine human interaction with a pedagogical agent and the passive and active detection of such agents within a synchronous, online environment. A pedagogical agent is a software application which can provide a human like interaction using a natural language interface. These may be familiar from the smartphone interfaces such as ‘Siri’ or ‘Cortana’, or the virtual online assistants found on some websites, such as ‘Anna’ on the Ikea website. Pedagogical agents are characters on the computer screen with embodied life-like behaviours such as speech, emotions, locomotion, gestures, and movements of the head, the eye, or other parts of the body. The passive detection test is where participants are not primed to the potential presence of a pedagogical agent within the online environment. The active detection test is where participants are primed to the potential presence of a pedagogical agent. The purpose of the study was to examine how people passively detected pedagogical agents that were presenting themselves as humans in an online environment. In order to locate the pedagogical agent in a realistic higher education online environment, problem-based learning online was used. Problem-based learning online provides a focus for discussions and participation, without creating too much artificiality. The findings indicated that the ways in which students positioned the agent tended to influence the interaction between them. One of the key findings was that since the agent was focussed mainly on the pedagogical task this may have hampered interaction with the students, however some of its non-task dialogue did improve students' perceptions of the autonomous agents’ ability to interact with them. It is suggested that future studies explore the differences between the relationships and interactions of learner and pedagogical agent within authentic situations, in order to understand if students' interactions are different between real and virtual mentors in an online setting.
Resumo:
It has been established that Wingate-based high-intensity training (HIT) consisting of 4 to 6 x 30-s all-out sprints interspersed with 4-min recovery is an effective training paradigm. Despite the increased utilisation of Wingate-based HIT to bring about training adaptations, the majority of previous studies have been conducted over a relatively short timeframe (2 to 6 weeks). However, activity during recovery period, intervention duration or sprint length have been overlooked. In study 1, the dose response of recovery intensity on performance during typical Wingate-based HIT (4 x 30-s cycle all-out sprints separated by 4-min recovery) was examined and active recovery (cycling at 20 to 40% of V̇O2peak) has been shown to improve sprint performance with successive sprints by 6 to 12% compared to passive recovery (remained still), while increasing aerobic contribution to sprint performance by ~15%. In the following study, 5 to 7% greater endurance performance adaptations were achieved with active recovery (40%V̇O2peak) following 2 weeks of Wingate-based HIT. In the final study, shorter sprint protocol (4 to 6 x 15-s sprints interspersed with 2 min of recovery) has been shown to be as effective as typical 30-s Wingate-based HIT in improving cardiorespiratory function and endurance performance over 9 weeks with the improvements in V̇O2peak being completed within 3 weeks, whereas exercise capacity (time to exhaustion) being increased throughout 9 weeks. In conclusion, the studies demonstrate that active recovery at 40% V̇O2peak significantly enhances endurance adaptations to HIT. Further, the duration of the sprint does not seem to be a driving factor in the magnitude of change with 15 sec sprints providing similar adaptations to 30 sec sprints. Taken together, this suggests that the arrangement of recovery mode should be considered to ensure maximal adaptation to HIT, and the practicality of the training would be enhanced via the reduction in sprint duration without diminishing overall training adaptations.
Resumo:
The use of waters around Lundy by dolphins and porpoises was measured using summer shore-based watches and passive acoustic surveillance between July 2011 and July 2012. Common dolphins (Delphinus delphis) were the only cetacean species observed during shore-based surveys. C-PODs moored on the Ethel and MV Robert wrecks close to the Lundy coast showed a peak in delphinid vocal activity during August 2011. Passive acoustic detections of harbour porpoises (Phocoena phocoena) were highest during ebb tidal phases and most often associated with the tidal rip at the south of the island. These findings show tidal and monthly influences on odontocete behaviour and highlight the value of continuous, passive acoustic monitoring for these highly mobile marine predators around Lundy.
Resumo:
A sensing device for a touchless, hand gesture, user interface based on an inexpensive passive infrared pyroelectric detector array is presented. The 2 x 2 element sensor responds to changing infrared radiation generated by hand movement over the array. The sensing range is from a few millimetres to tens of centimetres. The low power consumption (< 50 μW) enables the sensor’s use in mobile devices and in low energy applications. Detection rates of 77% have been demonstrated using a prototype system that differentiates the four main hand motion trajectories – up, down, left and right. This device allows greater non-contact control capability without an increase in size, cost or power consumption over existing on/off devices.
Resumo:
This paper, based on the outcome of discussions at a NORMAN Network-supported workshop in Lyon (France) in November 2014 aims to provide a common position of passive sampling community experts regarding concrete actions required to foster the use of passive sampling techniques in support of contaminant risk assessment and management and for routine monitoring of contaminants in aquatic systems. The brief roadmap presented here focusses on the identification of robust passive sampling methodology, technology that requires further development or that has yet to be developed, our current knowledge of the evaluation of uncertainties when calculating a freely dissolved concentration, the relationship between data from PS and that obtained through biomonitoring. A tiered approach to identifying areas of potential environmental quality standard (EQS) exceedances is also shown. Finally, we propose a list of recommended actions to improve the acceptance of passive sampling by policy-makers. These include the drafting of guidelines, quality assurance and control procedures, developing demonstration projects where biomonitoring and passive sampling are undertaken alongside, organising proficiency testing schemes and interlaboratory comparison and, finally, establishing passive sampler-based assessment criteria in relation to existing EQS.
Resumo:
Measurement of marine algal toxins has traditionally focussed on shellfish monitoring while, over the last decade, passive sampling has been introduced as a complementary tool for exploratory studies. Since 2011, liquid chromatography-tandem mass spectrometry (LC-MS/MS) has been adopted as the EU reference method (No.15/2011) for detection and quantitation of lipophilic toxins. Traditional LC-MS approaches have been based on low-resolution mass spectrometry (LRMS), however, advances in instrument platforms have led to a heightened interest in the use of high-resolution mass spectrometry (HRMS) for toxin detection. This work describes the use of HRMS in combination with passive sampling as a progressive approach to marine algal toxin surveys. Experiments focused on comparison of LRMS and HRMS for determination of a broad range of toxins in shellfish and passive samplers. Matrix effects are an important issue to address in LC-MS; therefore, this phenomenon was evaluated for mussels (Mytilus galloprovincialis) and passive samplers using LRMS (triple quadrupole) and HRMS (quadrupole time-of-flight and Orbitrap) instruments. Matrix-matched calibration solutions containing okadaic acid and dinophysistoxins, pectenotoxin, azaspiracids, yessotoxins, domoic acid, pinnatoxins, gymnodimine A and 13-desmethyl spirolide C were prepared. Similar matrix effects were observed on all instruments types. Most notably, there was ion enhancement for pectenotoxins, okadaic acid/dinophysistoxins on one hand, and ion suppression for yessotoxins on the other. Interestingly, the ion selected for quantitation of PTX2 also influenced the magnitude of matrix effects, with the sodium adduct typically exhibiting less susceptibility to matrix effects than the ammonium adduct. As expected, mussel as a biological matrix, quantitatively produced significantly more matrix effects than passive sampler extracts, irrespective of toxin. Sample dilution was demonstrated as an effective measure to reduce matrix effects for all compounds, and was found to be particularly useful for the non-targeted approach. Limits of detection and method accuracy were comparable between the systems tested, demonstrating the applicability of HRMS as an effective tool for screening and quantitative analysis. HRMS offers the advantage of untargeted analysis, meaning that datasets can be retrospectively analysed. HRMS (full scan) chromatograms of passive samplers yielded significantly less complex data sets than mussels, and were thus more easily screened for unknowns. Consequently, we recommend the use of HRMS in combination with passive sampling for studies investigating emerging or hitherto uncharacterised toxins.