995 resultados para optical and electrical spectra analyses


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Metal-rich sediments were found in the West Philippine Basin at DSDP sites 291 (located about 500 km SW of the Philippine Ridge or Central Basin Fault) and 294/295 (located about 580 km NE of the Philippine Ridge). In both cases the metalliferous deposits constitute a layer, probably Eocene in age, resting directly above the basaltic basement at the bottom of the sediment column. The chemistry of the major (including Fe and Mn) and trace elements (including trace metals, rare earth elements, U and Th) suggest a strong similarity of these deposits to metalliferous deposits produced by hydrothermal activity at oceanic spreading centers. Well-crystallized hematite is a major component of the metal-rich deposits at site 294/295. We infer that the Philippine Sea deposits were formed at some spreading center by hydrothermal processes of metallogenesis, similar to processes occurring at oceanic spreading centers. A locus for their formation might have been the Philippine Ridge (Central Basin Fault), probably an extinct spreading center. We conclude that metallogenesis of the type occurring at oceanic spreading centers can take place also in marginal basins. This has implications for the origin of metal deposits found in some ophiolite complexes, such as those in Luzon (Philippines), which may represent fragments of former marginal basins rather than of oceanic lithosphere.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The combined use of grain size and magnetic fabric analyses provides the ability to discriminate among depositional environments in deep-sea terrigenous sediments. We analyzed samples from three different depositional settings: turbidites, pelagic or hemipelagic interlayers, and sediment drifts. Results indicate that sediment samples from these different environments can be distinguished from each other on the basis of their median grain size, sorting, as well as the intensity and shape of magnetic fabric as determined from an examination of the anisotropy of magnetic susceptibility. We use these discriminators to interpret downcore samples from the Bermuda Rise sediment drift. We find that the finer grains of the Bermuda Rise (relative to the Blake Outer Ridge) do not result from lower depositional energy (current speed) and so may reflect a difference in the nature of sediment being delivered to the site (i.e., distance from source) between the two locations.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The geological history of Filchnerfjella and surrounding areas (2°E to 8°E) in central Dronning Maud Land, East Antarctica, is constructed from metamorphic and igneous petrology, and structural investigations. The geology of Filchner-fjella consists mainly of metamorphic rocks accompanied by intrusive rocks. Two stages of metamorphism can be recognized in this area. The earlier stage metamorphism is defined as a porphyroblast stage (garnet, hornblende, and sillimanite stable), and the later one is recognized as a symplectic stage (orthopyroxene and cordieritestable). Taking metamorphic textures and geothermobarometries into account, the rocks experienced an early high-P/medium-T followed by a low-P and high-T stage. Partial melting took place during the low-P/high-T stage, because probable melt of leucocratic gneiss contains cordierite. The field relationships and petrography of the syenite at Filchnerfjella are similar to those of post-tectonic plutons from central Dronning Maud Land, and most of the post-tectonic intrusive rocks have within-plate geochemical features. The structural history in Filchnerfjella and surrounding areas can be divided into the Pan-African stage and the Meso to Cenozoic stage that relates to the break-up of Gondwana.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The distribution of rainfall in tropical Africa is controlled by the African rainbelt**1, which oscillates on a seasonal basis. The rainbelt has varied on centennial to millennial timescales along with changes in Northern Hemisphere high-latitude climate**2, 3, 4, 5, the Atlantic meridional overturning circulation**6 and low-latitude insolation**7 over the past glacial-interglacial cycle. However, the overall dynamics of the African rainbelt remain poorly constrained and are not always consistent with a latitudinal migration**2, 4, 5, 6, as has been proposed for other regions**8, 9. Here we use terrestrially derived organic and sedimentary markers from marine sediment cores to reconstruct the distribution of vegetation, and hence rainfall, in tropical Africa during extreme climate states over the past 23,000 years. Our data indicate that rather than migrating latitudinally, the rainbelt contracted and expanded symmetrically in both hemispheres in response to changes in climate. During the Last Glacial Maximum and Heinrich Stadial 1, the rainbelt contracted relative to the late Holocene, which we attribute to a latitudinal compression of atmospheric circulation associated with lower global mean temperatures**10. Conversely, during the mid-Holocene climatic optimum, the rainbelt expanded across tropical Africa. In light of our findings, it is not clear whether the tropical rainbelt has migrated latitudinally on a global scale, as has been suggested**8,9.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The course of sea-level fluctuations during Termination II (TII; the penultimate deglaciation), which is critical for understanding ice-sheet dynamics and suborbital climate variability, has yet to be established. This is partly because most shallow-water sequences encompassing TII were eroded during sea-level lowstands of the last glacial period or were deposited below the present sea level. Here we report a new sequence recording sea-level changes during TII in the Pleistocene sequence at Hole M0005D (water depth: 59.63 m below sea level [mbsl]) off Tahiti, French Polynesia, which was drilled during Integrated Ocean Drilling Program Expedition 310. Lithofacies variations and stratigraphic changes in the taxonomic composition, preservation states, and intraspecific test morphology of large benthic foraminifers indicate a deepening-upward sequence in the interval from Core 310-M0005D-26R (core depth: 134 mbsl) through -16R (core depth: 106 mbsl). Reconstruction of relative sea levels, based on paleodepth estimations using large benthic foraminifers, indicated a rise in sea level of about 90 m during this interval, suggesting its correlation with one of the terminations. Assuming that this rise in sea level corresponds to that during TII, after correcting for subsidence since the time of deposition, a highstand sea-level position would be 2 ± 15 m above present sea level (masl), which is generally consistent with highstand sea-level positions in MIS 5e (4 ± 2 masl). If this rise in sea level corresponds to that during older terminations, the subsidence-corrected highstand sea-level positions (30 ± 15 masl for Termination III and 54 ± 15 masl for Termination IV) are not consistent with reported ranges of interglacial sea-level highstands (-18 to 15 masl). Therefore, the studied interval likely records the rise in sea level and associated environmental changes during TII. In particular, the intervening cored materials between the two episodes of sea-level rise found in the studied interval might record the sea-level reversal event during TII. This conclusion is consistent with U/Th ages of around 133 ka, which were obtained from slightly diagenetically altered (i.e., < 1% calcite) in situ corals in the studied interval (Core 310-M0005D-20R [core depth: 118 mbsl]). This study also suggests that our inverse approach to correlate a stratigraphic interval with an approximate time frame could be useful as an independent check on the accuracy of uranium-series dating, which has been applied extensively to fossil corals in late Quaternary sea-level studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of the large-scale ocean circulation on Sahel rainfall is elusive because of the shortness of the observational record. We reconstructed the history of eolian and fluvial sedimentation on the continental slope off Senegal during the past 57,000 years. Our data show that abrupt onsets of arid conditions in the West African Sahel were linked to cold North Atlantic sea surface temperatures during times of reduced meridional overturning circulation associated with Heinrich Stadials. Climate modeling suggests that this drying is induced by a southward shift of the West African monsoon trough in conjunction with an intensification and southward expansion of the midtropospheric African Easterly Jet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Authigenic carbonates associated with cold seeps provide valuable archives of changes in the long-term seepage activity. To investigate the role of shallow-buried hydrates on the seepage strength and fluid composition we analysed methane-derived carbonate precipitates from a high-flux hydrocarbon seepage area ("Batumi seep area") located on the south-eastern Black Sea slope in ca. 850 m. In a novel approach, we combined computerized X-ray tomography (CT) with mineralogical and isotope geochemical methods to get additional insights into the three-dimensional internal structure of the carbonate build-ups. X-ray diffractometry revealed the presence of two different authigenic carbonate phases, i.e. pure aragonitic rims associated with vital microbial mats and high-Mg calcite cementing the hemipelagic sediment. As indicated by the CT images, the initial sediment has been strongly deformed, first plastic then brittle, leading to brecciation of the progressively cemented sediment. The aragonitic rims on the other hand, represent a presumably recent carbonate growth phase since they cover the already deformed sediment. The stable oxygen isotope signature indicates that the high-Mg calcite cement incorporated pore water mixed with substantial hydrate water amounts. This points at a dominant role of high gas/fluid flux from decomposing gas hydrates leading to the deformation and cementation of the overlying sediment. In contrast, the aragonitic rims do not show an influence of 18O-enriched hydrate water. The differences in d18O between the presumably recent aragonite precipitates and the older high-Mg cements suggest that periods of hydrate dissociation and vigorous fluid discharge alternated with times of hydrate stability and moderate fluid flow. These results indicate that shallow-buried gas hydrates are prone to episodic decomposition with associated vigorous fluid flow. This might have a profound impact on the seafloor morphology resulting e.g. in the formation of carbonate pavements and pockmark-like structures but might also affect the local carbon cycle.