1000 resultados para nonpolynomial potential


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The reproductive biology of Yellowfin Tuna (Thunnus albacares) in the western Indian Ocean was investigated from samples collected in 2009 and 2010. In our study, 1012 female Yellowfin Tuna were sampled: 320 fish on board a purse seiner and 692 fish at a Seychelles cannery. We assessed the main biological parameters that describe reproductive potential: maturity, spawning seasonality, fish condition, and fecundity. The length at which 50% of the female Yellowfin Tuna population matures (L50) was estimated at 75 cm in fork length (FL) when the maturity threshold was established at the cortical alveolar stage of oocyte development. To enable comparison with previous studies, L50 also was estimated with maturity set at the vitellogenic stage of oocyte development; this assessment resulted in a higher value of L50 at 102 cm FL. The main spawning season, during which asynchrony in reproductive timing among sizes was observed, was November–February and a second peak occurred in June. Smaller females (<100 cm FL) had shorter spawning periods (December to February) than those (November to February and June) of large individuals, and signs of skip-spawning periods were observed among small females. The Yellowfin Tuna followed a “capital-income” breeder strategy during ovarian development, by mobilizing accumulated energy while using incoming energy from feeding. The mean batch fecundity for females 79–147 cm FL was estimated at 3.1 million oocytes, and the mean relative batch fecundity was 74.4 oocytes per gram of gonad-free weight. Our results, obtained with techniques defined more precisely than techniques used in previous studies in this region, provide an improved understanding of the reproductive cycle of Yellowfin Tuna in the western Indian Ocean.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Estuaries provide critical nursery habitat for many commercially and recreationally important fish and shellfish species. These productive, diverse ecosystems are particularly vulnerable to pollution because they serve as repositories for non–point-source contaminants from upland sources, such as pesticide runoff. Atrazine, among the most widely used pesticides in the United States, has also been one of the most extensively studied. There has not, however, been a specific assessment of atrazine in marine and estuarine ecosystems. This document characterizes the presence and transformation of atrazine in coastal waters, and the effects of atrazine on marine organisms. Review of marine and estuarine monitoring data indicate that atrazine is chronically present in U.S. coastal waters at relatively low concentrations. The concentrations detected have typically been below acute biological effects levels, and below the U.S. EPA proposed water quality criteria for atrazine. While direct risk of atrazine impacts are low, uncertainty remains regarding the effects of long-term low levels of atrazine in mixture with other contaminants. It is recommended that best management practices, such as the use of vegetative buffers and public education about pesticide use, be encouraged in the coastal zone to minimize runoff of atrazine into marine and estuarine waters.