892 resultados para non-uniform discontinuity modes
Resumo:
Organisations face increasing competition from new firms in emerging markets and their past superior products may no longer provide competitive advantage in markets based on different cost and value differentials. A shift in design practices from product solutions to health services which are accessible and affordable by all is required. This paper explores a design led approach to innovation to assist medical device companies develop new services and experiences and reshape their notions of the nature, development and deployment of health care services. This approach uses design tools and methodologies that are grounded in the authentic understandings of stakeholder experiences, to assist an organisation create a vision of likely future health care scenarios. Through this process, organisations can explore the complexities in the delivery of future health care services in new and emerging markets allowing them to tailor product and service solutions which focus on being accessible and affordable by all. The industry based case study for the design of health services in carried out in emerging economies. The contribution of this work in advancing research into design innovation and future research directions are also presented.
Resumo:
Concentrations of ultrafine (<0.1µm) particles (UFPs) and PM2.5 (<2.5µm) were measured whilst commuting along a similar route by train, bus, ferry and automobile in Sydney, Australia. One trip on each transport mode was undertaken during both morning and evening peak hours throughout a working week, for a total of 40 trips. Analyses comprised one-way ANOVA to compare overall (i.e. all trips combined) geometric mean concentrations of both particle fractions measured across transport modes, and assessment of both the correlation between wind speed and individual trip means of UFPs and PM2.5, and the correlation between the two particle fractions. Overall geometric mean concentrations of UFPs and PM2.5 ranged from 2.8 (train) to 8.4 (bus) × 104 particles cm-3 and 22.6 (automobile) to 29.6 (bus) µg m-3, respectively, and a statistically significant difference (p <0.001) between modes was found for both particle fractions. Individual trip geometric mean concentrations were between 9.7 × 103 (train) and 2.2 × 105 (bus) particles cm-3 and 9.5 (train) to 78.7 (train) µg m-3. Estimated commuter exposures were variable, and the highest return trip mean PM2.5 exposure occurred in the ferry mode, whilst the highest UFP exposure occurred during bus trips. The correlation between fractions was generally poor, and in keeping with the duality of particle mass and number emissions in vehicle-dominated urban areas. Wind speed was negatively correlated with, and a generally poor determinant of, UFP and PM2.5 concentrations, suggesting a more significant role for other factors in determining commuter exposure.
Resumo:
One of the main causes of above knee or transfemoral amputation (TFA) in the developed world is trauma to the limb. The number of people undergoing TFA due to limb trauma, particularly due to war injuries, has been increasing. Typically the trauma amputee population, including war-related amputees, are otherwise healthy, active and desire to return to employment and their usual lifestyle. Consequently there is a growing need to restore long-term mobility and limb function to this population. Traditionally transfemoral amputees are provided with an artificial or prosthetic leg that consists of a fabricated socket, knee joint mechanism and a prosthetic foot. Amputees have reported several problems related to the socket of their prosthetic limb. These include pain in the residual limb, poor socket fit, discomfort and poor mobility. Removing the socket from the prosthetic limb could eliminate or reduce these problems. A solution to this is the direct attachment of the prosthesis to the residual bone (femur) inside the residual limb. This technique has been used on a small population of transfemoral amputees since 1990. A threaded titanium implant is screwed in to the shaft of the femur and a second component connects between the implant and the prosthesis. A period of time is required to allow the implant to become fully attached to the bone, called osseointegration (OI), and be able to withstand applied load; then the prosthesis can be attached. The advantages of transfemoral osseointegration (TFOI) over conventional prosthetic sockets include better hip mobility, sitting comfort and prosthetic retention and fewer skin problems on the residual limb. However, due to the length of time required for OI to progress and to complete the rehabilitation exercises, it can take up to twelve months after implant insertion for an amputee to be able to load bear and to walk unaided. The long rehabilitation time is a significant disadvantage of TFOI and may be impeding the wider adoption of the technique. There is a need for a non-invasive method of assessing the degree of osseointegration between the bone and the implant. If such a method was capable of determining the progression of TFOI and assessing when the implant was able to withstand physiological load it could reduce the overall rehabilitation time. Vibration analysis has been suggested as a potential technique: it is a non destructive method of assessing the dynamic properties of a structure. Changes in the physical properties of a structure can be identified from changes in its dynamic properties. Consequently vibration analysis, both experimental and computational, has been used to assess bone fracture healing, prosthetic hip loosening and dental implant OI with varying degrees of success. More recently experimental vibration analysis has been used in TFOI. However further work is needed to assess the potential of the technique and fully characterise the femur-implant system. The overall aim of this study was to develop physical and computational models of the TFOI femur-implant system and use these models to investigate the feasibility of vibration analysis to detect the process of OI. Femur-implant physical models were developed and manufactured using synthetic materials to represent four key stages of OI development (identified from a physiological model), simulated using different interface conditions between the implant and femur. Experimental vibration analysis (modal analysis) was then conducted using the physical models. The femur-implant models, representing stage one to stage four of OI development, were excited and the modal parameters obtained over the range 0-5kHz. The results indicated the technique had limited capability in distinguishing between different interface conditions. The fundamental bending mode did not alter with interfacial changes. However higher modes were able to track chronological changes in interface condition by the change in natural frequency, although no one modal parameter could uniquely distinguish between each interface condition. The importance of the model boundary condition (how the model is constrained) was the key finding; variations in the boundary condition altered the modal parameters obtained. Therefore the boundary conditions need to be held constant between tests in order for the detected modal parameter changes to be attributed to interface condition changes. A three dimensional Finite Element (FE) model of the femur-implant model was then developed and used to explore the sensitivity of the modal parameters to more subtle interfacial and boundary condition changes. The FE model was created using the synthetic femur geometry and an approximation of the implant geometry. The natural frequencies of the FE model were found to match the experimental frequencies within 20% and the FE and experimental mode shapes were similar. Therefore the FE model was shown to successfully capture the dynamic response of the physical system. As was found with the experimental modal analysis, the fundamental bending mode of the FE model did not alter due to changes in interface elastic modulus. Axial and torsional modes were identified by the FE model that were not detected experimentally; the torsional mode exhibited the largest frequency change due to interfacial changes (103% between the lower and upper limits of the interface modulus range). Therefore the FE model provided additional information on the dynamic response of the system and was complementary to the experimental model. The small changes in natural frequency over a large range of interface region elastic moduli indicated the method may only be able to distinguish between early and late OI progression. The boundary conditions applied to the FE model influenced the modal parameters to a far greater extent than the interface condition variations. Therefore the FE model, as well as the experimental modal analysis, indicated that the boundary conditions need to be held constant between tests in order for the detected changes in modal parameters to be attributed to interface condition changes alone. The results of this study suggest that in a clinical setting it is unlikely that the in vivo boundary conditions of the amputated femur could be adequately controlled or replicated over time and consequently it is unlikely that any longitudinal change in frequency detected by the modal analysis technique could be attributed exclusively to changes at the femur-implant interface. Therefore further development of the modal analysis technique would require significant consideration of the clinical boundary conditions and investigation of modes other than the bending modes.
Resumo:
This study explores three-dimensional nonlineardynamic responses of typical tall buildings with and without setbacks under blast loading. These 20 storey reinforced concrete buildings have been designed for normal (dead, live and wind)loads. The influence of the setbacks on the lateral load response due to blasts in terms of peak deflections, accelerations, inter-storey drift and bending moments at critical locations (including hinge formation) were investigated. Structural response predictions were performed with a commercially available three-dimensional finite element analysis programme using non-linear direct integration time history analyses. Results obtained for buildings with different setbacks were compared and conclusions made. The comparisons revealed that buildings have setbacks that protect the tower part above the setback level from blast loading show considerably better response in terms of peak displacement and interstorey drift, when compared to buildings without setbacks. Rotational accelerations were found to depend on the periods of the rotational modes. Abrupt changes in moments and shears are experienced near the levels of the setbacks. Typical twenty storey tall buildings with shear walls and frames that are designed for only normaln loads perform reasonably well, without catastrophic collapse, when subjected to a blast that is equivalent to 500 kg TNT at a standoff distance of 10 m.
Resumo:
This paper investigates the research question ‘What is the effect of co-ethnic and non coethnic networking on business performance in Chinese immigrant businesses?’ The research will discuss key themes such as the extent to which Chinese immigrant entrepreneurs are embedded in co-ethnic and non co-ethnic networks and the affect of embeddedness on business performance, such as the entrepreneur’s satisfaction and business growth. Research on immigrant entrepreneurship has emerged as an important new area of inquiry within the field of entrepreneurship. The increased importance of the subject is due in part to major immigrant receiving countries, such as Australia, the United States and Canada, experiencing a high growth rate in their immigrant population. Reflecting on the existing research on immigrant entrepreneurship, it was decided to investigate the role of embeddedness on entrepreneurial business performance. This research seeks to identify the impact of embeddedness in co-ethnic and non co-ethnic networks on business performance of Chinese immigrant entrepreneurs in Australia. Chinese immigrant restaurant entrepreneurs in southeast Queensland, Australia were studied. The result expands on existing research on immigrant entrepreneurship, since the majority of immigrant entrepreneurship studies have been conducted on the United States and Canada immigrant experiences, but few have been conducted in the Australian immigrant entrepreneur context. This thesis also adds empirical testing to a research area with little empirical testing. The results indicated that embeddedness in the co-ethnic network is positively related to business performance measured by both growth and satisfaction. Embeddedness in the non co-ethnic network of the Chinese immigrant entrepreneurs in Australia did not show a similar pattern in accordance with studies conducted in the United States and Canada. This result is interesting and creates the opportunity for future research employing a comparative study.
Resumo:
This article introduces a “pseudo classical” notion of modelling non-separability. This form of non-separability can be viewed as lying between separability and quantum-like non-separability. Non-separability is formalized in terms of the non-factorizabilty of the underlying joint probability distribution. A decision criterium for determining the non-factorizability of the joint distribution is related to determining the rank of a matrix as well as another approach based on the chi-square-goodness-of-fit test. This pseudo-classical notion of non-separability is discussed in terms of quantum games and concept combinations in human cognition.
Resumo:
BACKGROUND: Indigenous patients with acute coronary syndromes represent a high-risk group. There are however few contemporary datasets addressing differences in the presentation and management of Indigenous and non-Indigenous patients with chest pain. METHODS: The Heart Protection Project, is a multicentre retrospective audit of consecutive medical records from patients presenting with chest pain. Patients were identified as Indigenous or non-Indigenous, and time to presentation and cardiac investigations as well as rates of cardiac investigations and procedures were compared between the two groups. RESULTS: Of the 2380 patients included, 199 (8.4%) identified as Indigenous, and 2174 (91.6%) as non-Indigenous. Indigenous patients were younger, had higher rates hyperlipidaemia, diabetes, smoking, known coronary artery disease and a lower rate of prior PCI; and were significantly less likely to have private health insurance, be admitted to an interventional facility or to have a cardiologist as primary physician. Following adjustment for difference in baseline characteristics, Indigenous patients had comparable rates of cardiac investigations and delay times to presentation and investigations. CONCLUSIONS: Although the Indigenous population was identified as a high-risk group, in this analysis of selected Australian hospitals there were no significant differences in treatment or management of Indigenous patients in comparison to non-Indigenous.
Resumo:
Objective Uterine Papillary Serous Carcinoma (UPSC) is uncommon and accounts for less than 5% of all uterine cancers. Therefore the majority of evidence about the benefits of adjuvant treatment comes from retrospective case series. We conducted a prospective multi-centre non-randomized phase 2 clinical trial using four cycles of adjuvant paclitaxel plus carboplatin chemotherapy followed by pelvic radiotherapy, in order to evaluate the tolerability and safety of this approach. Methods This trial enrolled patients with newly diagnosed, previously untreated patients with stage 1b-4 (FIGO-1988) UPSC with a papillary serous component of at least 30%. Paclitaxel (175 mg/m2) and carboplatin (AUC 6) were administered on day 1 of each 3-week cycle for 4 cycles. Chemotherapy was followed by external beam radiotherapy to the whole pelvis (50.4 Gy over 5.5 weeks). Completion and toxicity of treatment (Common Toxicity Criteria, CTC) and quality of life measures were the primary outcome indicators. Results Twenty-nine of 31 patients completed treatment as planned. Dose reduction was needed in 9 patients (29%), treatment delay in 7 (23%), and treatment cessation in 2 patients (6.5%). Hematologic toxicity, grade 3 or 4 occurred in 19% (6/31) of patients. Patients' self-reported quality of life remained stable throughout treatment. Thirteen of the 29 patients with stages 1–3 disease (44.8%) recurred (average follow up 28.1 months, range 8–60 months). Conclusion This multimodal treatment is feasible, safe and tolerated reasonably well and would be suitable for use in multi-institutional prospective randomized clinical trials incorporating novel therapies in patients with UPSC.
Raman spectroscopic study of a hydroxy-arsenate mineral containing bismuth-atelestite Bi2O(OH)(AsO4)
Resumo:
The Raman spectrum of atelestite Bi2O(OH)(AsO4), a hydroxy-arsenate mineral containing bismuth, has been studied in terms of spectra-structure relations. The studied spectrum is compared with the Raman spectrum of atelestite downloaded from the RRUFF database. The sharp intense band at 834 cm-1 is assigned to the 1 AsO43- (A1) symmetric stretching mode and the three bands at 767, 782 and 802 cm-1 to the 3 AsO43- antisymmetric stretching modes. The bands at 310, 324, 353, 370, 395, 450, 480 and 623 cm-1 are assigned to the corresponding ν4 and ν2 bending modes and Bi-O-Bi (vibration of bridging oxygen) and Bi-O (vibration of non-bridging oxygen) stretching vibrations. Lattice modes are observed at 172, 199 and 218 cm-1. A broad low intensity band at 3095 cm-1 is attributed to the hydrogen bonded OH units in the atelestite structure. A weak band at 1082 cm-1 is assigned to (Bi-OH) vibration.
Resumo:
The concept of non-destructive testing (NDT) of materials and structures is of immense importance in engineering and medicine. Several NDT methods including electromagnetic (EM)-based e.g. X-ray and Infrared; ultrasound; and S-waves have been proposed for medical applications. This paper evaluates the viability of near infrared (NIR) spectroscopy, an EM method for rapid non-destructive evaluation of articular cartilage. Specifically, we tested the hypothesis that there is a correlation between the NIR spectrum and the physical and mechanical characteristics of articular cartilage such as thickness, stress and stiffness. Intact, visually normal cartilage-on-bone plugs from 2-3yr old bovine patellae were exposed to NIR light from a diffuse reflectance fibre-optic probe and tested mechanically to obtain their thickness, stress, and stiffness. Multivariate statistical analysis-based predictive models relating articular cartilage NIR spectra to these characterising parameters were developed. Our results show that there is a varying degree of correlation between the different parameters and the NIR spectra of the samples with R2 varying between 65 and 93%. We therefore conclude that NIR can be used to determine, nondestructively, the physical and functional characteristics of articular cartilage.
Resumo:
This report presents findings from a project that considered a) the current capacity of Adult and Community Education (ACE) providers to offer non-accredited courses and single modules of accredited learning that provide pathways into full scale accredited VET programs, and b) the factors that aid and inhibit this from occurring. Based on the findings, suggestions are made as to what needs to be done to extend this capacity and thereby to achieve the goals outlined in the 2008 Ministerial Declaration on Adult Community Education.
Resumo:
Many minerals based upon antimonite and antimonate anions remain to be studied. Most of the bands occur in the low wavenumber region, making infrared spectroscopy difficult to use. This problem can be overcome by using Raman spectroscopy. Raman spectra of the mineral klebelsbergite Sb4O4(OH)2(SO4) were studied, and related to the structure of the mineral. Raman bands observed at 971 cm-1 and a series of overlapping bands are observed at 1029, 1074, 1089, 1139 and 1142 cm-1 are assigned to the SO42- ν1 symmetric and ν3 antisymmetric stretching modes. Two Raman bands are observed at 662 and 723 cm-1 and assigned to the SbO ν3 antisymmetric and ν1 symmetric stretching modes. The intense Raman bands at 581, 604 and 611 cm-1 are assigned to the ν4 SO42- bending modes. Two overlapping bands at 481 and 489 cm-1 are assigned to the ν2 SO42- bending mode. Low intensity bands at 410, 435 and 446 cm-1 may be attributed to OSbO bending modes. The Raman band at 3435 cm-1 is attributed to the OH stretching vibration of the OH units. Multiple Raman bands for both SO42- and SbO stretching vibrations support the concept of the non-equivalence of these units in the klebelsbergite structure. It is proposed that two sulphate anions are distorted to different extents in the klebelsbergite structure.
Resumo:
The mineral delvauxite CaFe3+4(PO4,SO4)2(OH)8•4-6H2O has been characterised by Raman spectroscopy and infrared spectroscopy. The mineral is associated with the minerals diadochite and destinezite. Delvauxite appears to vary in crystallinity from amorphous to semi-crystalline. The mineral is often X-ray non-diffracting. The minerals are found in soils and may be described as ‘colloidal’ minerals. Vibrational spectroscopy enables determination of the molecular structure of delvauxite. Bands are assigned to phosphate and sulphate stretching and bending modes. Two symmetric stretching modes for both the phosphate and sulphate symmetric stretching modes support the concept of non-equivalent phosphate and sulphate units in the mineral structure. Multiple water bending and stretching modes imply that non-equivalent water molecules in the structure exist with different hydrogen bond strengths.
Resumo:
Schizophrenia may not be a single disease, but the result of a diverse set of related conditions. Modern neuroscience is beginning to reveal some of the genetic and environmental underpinnings of schizophrenia; however, an approach less well travelled is to examine the medical disorders that produce symptoms resembling schizophrenia. This book is the first major attempt to bring together the diseases that produce what has been termed 'secondary schizophrenia'. International experts from diverse backgrounds ask the questions: does this medical disorder, or drug, or condition cause psychosis? If yes, does it resemble schizophrenia? What mechanisms form the basis of this relationship? What implications does this understanding have for aetiology and treatment? The answers are a feast for clinicians and researchers of psychosis and schizophrenia. They mark the next step in trying to meet the most important challenge to modern neuroscience – understanding and conquering this most mysterious of human diseases.